首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
辽河原油沥青质及胶质油水界面化学性质初探   总被引:13,自引:2,他引:11  
对由辽河原油中分别提取的沥青质组分,胶质组分配成的模型油与水的界面性质进行了研究,还考察了油相芳香度对涸青质,胶质模型油油水界面粘度的影响及当模型油中沥青质与胶质共存时的油水界面性质。结果表明,含沥青质的模型油的油水界面粘度较高,界面老化现象严重;而仅含胶质的模型油的油水界粘度较小。  相似文献   

2.
Asphaltenes and resins are two of the several, but important, heavy organics present in petroleum fluids. Asphaltenes are operationally defined as the non-colatile and polar fraction of petroleum that is insoluble in n-alkanes (i.e., n-pentane). Conversely resins are defined as the non-colatile and polar fraction of petroleum that is soluble in n-alkanes (i.e., n-pentane), and aromatic solvents (i.e., toluene), and insoluble in ethyl acetate. A commonly accepted view in the petroleum chemistry is that crude oil asphaltenes form micelles which are stabilized by adsorbed resins kept in solution by aromatics. Two key parameters that control the stability of asphaltene micelles in a crude oil are the ratio of aromatics to saturates and that of resins to asphaltenes. When these ratios decrease, asphaltene micelles will coalesce and form larger aggregates. The precipitation of asphaltene aggregates can cause problems such as reservoir plugging and wettability reversal.  相似文献   

3.
The Solubility and Three-Dimensional Structure of Asphaltenes   总被引:4,自引:0,他引:4  
The tendency of the asphaltenes to form aggregates in hydrocarbon solution is one of their most characteristic features and has tended to complicate the determination of the structure of petroleum In addition, if the composition and properties of the precipitated asphaltenes reflect those of the micelles in solution, the latter should be considered as mixed micelles. This is a reasonable assumption in view of the large quantities of soluble resins found in the precipitated solid

Empirical observations indicate that the resins play an important role in stabilizing asphaltenes in crude oil and under unfavorable solvent conditions the asphaltene species are prone to further aggregation into clusters that are unstable and precipitate from the crude oil. It is also suggested that the resins and the asphaltenes from a particular crude oil have points of structural similarity relative to the asphaltenes and resins from another crude oil. On a more localized scale, i.e. in one particular crude oil there are also structural differences within the constituents of asphaltenes and structural differences within the constituents of the resins are also anticipated

Therefore, the structure of the micelles within any one crude oil must be expected to be varied and non-homogenous. From the evidence cited herein, it follows that the potential for graphite-type stacking by the asphaltene molecules in the center of a micelle might not be as great as the potential for the micelles forming by asphaltene-resin interactions rather than by asphaltene-asphaltene interactions  相似文献   

4.
ABSTRACT

Asphaltenes and resins are two of the several, but important, heavy organics present in petroleum fluids. Asphaltenes are operationally defined as the non-colatile and polar fraction of petroleum that is insoluble in n-alkanes (i.e., n-pentane). Conversely resins are defined as the non-colatile and polar fraction of petroleum that is soluble in n-alkanes (i.e., n-pentane), and aromatic solvents (i.e., toluene), and insoluble in ethyl acetate. A commonly accepted view in the petroleum chemistry is that crude oil asphaltenes form micelles which are stabilized by adsorbed resins kept in solution by aromatics. Two key parameters that control the stability of asphaltene micelles in a crude oil are the ratio of aromatics to saturates and that of resins to asphaltenes. When these ratios decrease, asphaltene micelles will coalesce and form larger aggregates. The precipitation of asphaltene aggregates can cause problems such as reservoir plugging and wettability reversal.  相似文献   

5.
Asphaltenes and resins have been separated from four mexican oils suffering from the deposition of asphaltenic material during recovery operations. A SARA separation of the oils was performed and the resins and asphaltenes further analyzed. Characterization methods employed were FTIR, elemental composition both of CHNSO, and trace metals and molecular weight determination using size exclusion chromatography. NMR techniques were applied to two asphaltene samples. The overall scope of the work was to get a better understanding of the nature of the asphaltene stability at a molecular level in these problematic oils. Separation of resin in two fractions indicates that there is no long alkyl chains in these as given by FTIR, which may be the cause of the lack of stability along with the large difference in bubble point and reservoir pressure.  相似文献   

6.
Abstract

The formation of tight water-in-oil emulsions during production and transport of crude oils is a great problem challenging the petroleum industry. Tremendous research works are directed to understanding the mechanism of formation, stabilization, and controlling of oil field emulsions. This article presents experimental results of some of the factors controlling the formation and stabilization of water-in-crude oil emulsions. In this study, asphaltenes and resins separated from emulsion samples collected from Burgan oil field in Kuwait have been used to study emulsion stability. Model oils of resin to asphaltene ratio of 5:1 and toluene-heptane mixtures have been used to study the effect of oil aromaticity on emulsion stability. Results indicate that at low toluene content (below 20%) or high content (above 40%) less stable emulsions are formed. At a threshold value of 30% toluene, a very tight model oil emulsion is formed. The effect of resins to asphaltene (R/A) ratio on stability of model oil has also been investigated. Results reported in this paper show that as the R/A increases the emulsions become less stable. The effect of pH on stability of model oil emulsion made of 50/50 heptane-toluene mixture having R/A ratio of 5:1 have been studied. Experimental results revealed that as the pH of the aqueous phase of model oil increased from 2 to 10, the emulsion became less stable. At high pH, the asphaltene particles are subjected to complete ionization leading to destruction of the water-oil interface and eventually breakdown of the emulsion.  相似文献   

7.
Asphaltenes and resins have been separated from four mexican oils suffering from the deposition of asphaltenic material during recovery operations. A SARA separation of the oils was performed and the resins and asphaltenes further analyzed. Characterization methods employed were FTIR, elemental composition both of CHNSO, and trace metals and molecular weight determination using size exclusion chromatography. NMR techniques were applied to two asphaltene samples. The overall scope of the work was to get a better understanding of the nature of the asphaltene stability at a molecular level in these problematic oils. Separation of resin in two fractions indicates that there is no long alkyl chains in these as given by FTIR, which may be the cause of the lack of stability along with the large difference in bubble point and reservoir pressure.

  相似文献   

8.
The oxygen absorption behaviors and kinetics of Shanjiasi, Shengli, and Renqiu petroleum asphalts and their constituents including saturates, aromatics, resins, and asphaltenes were successfully studied at 50°C, 0.133 MPa (O2) and 1 mm sample film in darkness by means of precise measurement of oxygen pressure changes in reactor. The experimental results that the resin and the asphaltene can easily absorb oxygen and they are more active constituents in petroleum asphalt, while the saturate hardly absorbs oxygen, which is the most stable constituent of petroleum asphalt. The better the antiaging performance of straight run petroleum asphalt, the more stable its constituents and the less oxygen they absorb generally. The oxygen absorption rate of asphaltene diluted with the lower viscous saturate is obviously higher than that of pure asphaltene. The resin constituent of Shanjiasi asphalt could remarkably improve the antiaging ability of Shengli asphalt by the constituent substitution. The kinetic model of maximum combined oxygen presented in this paper could satisfactorily explain the oxygen absorption behaviors of petroleum asphalts and their constituents, and the oxygen absorption quantities calculated by the model are very identified with the test ones.  相似文献   

9.
Thermal transformations of petroleum components of paraffin-base heavy crude oil and oils (hydrocarbon concentrate), a mixture of oils and resins (maltenes), and a mixture of oils with asphaltenes isolated from the crude have been studied in order to assess the effect of resins and asphaltenes on the hydrocarbon conversion direction. Thermolysis of samples has been conducted at 450°C for 2 h in the isothermal mode. Data on the material balance of the process have been obtained, and the composition of the gaseous and liquid products of thermolysis has been determined. The gaseous products of thermolysis consist of hydrogen, carbon dioxide, and C1–C5 hydrocarbons. It has been shown that the thermolysis of all the samples is accompanied by the appearance of newly formed resins and asphaltenes. Analysis of the dynamics of changes in the hydrocarbon composition of the liquid thermolysis products has shown that the resins, rather than asphaltenes affect to a greater extent the direction of hydrocarbon cracking reactions.  相似文献   

10.
Abstract

The oxygen absorption behaviors and kinetics of Shanjiasi, Shengli, and Renqiu petroleum asphalts and their constituents including saturates, aromatics, resins, and asphaltenes were successfully studied at 50°C, 0.133 MPa (O2) and 1 mm sample film in darkness by means of precise measurement of oxygen pressure changes in reactor. The experimental results that the resin and the asphaltene can easily absorb oxygen and they are more active constituents in petroleum asphalt, while the saturate hardly absorbs oxygen, which is the most stable constituent of petroleum asphalt. The better the antiaging performance of straight run petroleum asphalt, the more stable its constituents and the less oxygen they absorb generally. The oxygen absorption rate of asphaltene diluted with the lower viscous saturate is obviously higher than that of pure asphaltene. The resin constituent of Shanjiasi asphalt could remarkably improve the antiaging ability of Shengli asphalt by the constituent substitution. The kinetic model of maximum combined oxygen presented in this paper could satisfactorily explain the oxygen absorption behaviors of petroleum asphalts and their constituents, and the oxygen absorption quantities calculated by the model are very identified with the test ones.  相似文献   

11.
The article describes the prepamtian method and pmperties of carbonadsorbents prepared from coal with additions of petroleum asphaltites (asphaltene concentrates) or the semicokes Adsorbents prepared according to a commercial scheme have properties of selective adsorbents for silver hydrometallurgy  相似文献   

12.
An analysis of the effects of an almost continuous chemical distribution of asphaltenes and resins on the molecular recognition processes occurring in crude oil indicates that their aggregates will have a broad distribution both in the chemical composition and in the strength of the intermolecular interactions responsible for the aggregation. Then, crude oil cannot be described just as a sol formed by solid asphaltene particles dispersed by resins or as a simple micellar system of asphaltene and resin molecules. The molecular aggregates may vary from solid particles formed by asphaltenes and resins to loosely bound micelles with quite short lifetimes. These different aggregates may coexist within the crude oil and many will exchange components with others. The entropic contributions to the changes in free energy upon aggregation were also discussed. Molecular mechanics calculations showed that a model asphaltene aggregate from Athabasca exhibits stronger interactions with its resins than with solvents such as toluene and n-octane. The resins showed a considerable selectivity for the different adsorption sites of the asphaltene aggregate. This selectivity was stronger than that found for the solvent molecules, indicating that it is enthalpically more favorable for them to form aggregates with the asphaltenes. The selectivity may also help to explain the specificity of some resins that are able to disperse only the asphaltenes of certain types of crude oils while failing to do the same for others.  相似文献   

13.
The purpose of this work is to research the characteristics of the production of coke in thermal and hydrothermal cracking from residual oils and their deasphalted oils Using ethyl acetate, because it allows the elimination of both resins and asphaltenes (colloidal matter) from the parent oil in only one step. This improves the deasphalted oil as coke precursors and basic nitrogen compounds present in the resin fraction are practically eliminated.

A 104 ml batch autoclave reactor with a cooling system was used for the thermal and hydrothermal cracking experiments. This reactor can withstand temperatures of up to 500°C, pressures of 500 bar and a rocking velocity of 1 Hz. The influence of the temperature was investigated at 400, 425 and 450°C and at 0, 20, 40, 80,  相似文献   

14.
The properties of two resins (Tahe resin and Liaohe resin) and their influences on the dispersion of two asphaltenes (Tahe asphaltene and Liaohe asphaltene) are investigated by laboratory experiments. The results indicate that the adsorption isotherms of two resins are accorded with the Freundlich absorption model. The shape of the curves obtained could be attributed to both multilayer adsorption of resins on asphaltenes surfaces and the penetration of resins into the microporous structure of the asphaltenes. Based on the combined results from the shape of the curves and chemical properties of resins, the relative adsorption quantity of Tahe resin is higher than that of Liaohe resin due to the stronger polarity of Tahe resin, and the effect of Tahe resin on the dispersion of asphaltene is stronger than that of Liaohe rein. The different properties of resin can directly lead to the difference of dispersion performance on asphaltene in crude oil, which is closely related to the chemical structure of resin. The more the number of aromatic structure of the resin, the stronger the effect of resin on the dispersion of asphaltene there is.  相似文献   

15.
A crude oil has four main constituents: saturates, aromatics, resins, and asphaltenes. The asphaltenes in crude oil are the most complex and heavy organic compounds. The classic definition of asphaltenes is based on the solution properties of petroleum residuum in various solvents. Asphaltenes are a solubility range that is soluble in light aromatics such as benzene and toluene, but are insoluble in lighter paraffins. The particular paraffins, such as n-pentane and n-heptane, are used to precipitate asphaltenes from crude oil. Deposition of asphaltenes in petroleum crude and heavy oil can cause a number of severe problems. The precipitation of asphaltene aggregates can cause such severe problems as reservoir plugging and wettability reversal. Asphaltenes can precipitate on metal surface. Cleaning the precipitation site as well as possible appears to slow reprecipitation. To prevent deposition inside the reservoir, it is necessary to estimate the amount of deposition due to various factors. The processes can be changed to minimize the asphaltene flocculation, and chemical applications can be used effectively to control depositions when process changes are not cost effective. Asphaltene flocculation can be controlled through better knowledge of the mechanisms that cause its flocculation in the first place. The processes can be controlled to minimize the asphaltene flocculation, and chemical applications can be used effectively to control depositions when process changes are not cost effective.  相似文献   

16.
The Northern Viking Graben area in the Norwegian North Sea was studied in order to investigate the petroleum formation characteristics of the Upper Jurassic Draupne Formation. In this area, the organofacies of the Draupne Formation, and consequently its petroleum generation characteristics, show significant variations. These variations represent a major risk, particularly in the context of basin modelling studies. Therefore, tar‐mat asphaltenes, oil asphaltenes and source‐rock samples from this area were studied in order to evaluate the use of migrated asphaltenes from petroleum reservoirs and tar mats in basin modelling. The samples were studied using bulk kinetic analysis, open‐system pyrolysis‐gas chromatography and elemental analyses, and the results were integrated into a basin modelling study. The results from these different sample materials were compared both to each other and to natural petroleum, in order to assess their significance for future petroleum exploration activities. We show that in cumulative petroleum systems, the transformation characteristics of the asphaltenes incorporate those of the individual source rock intervals which have contributed to the relevant reservoir system. Thus, the petroleum formation window predicted by the use of asphaltene kinetics is broad, and covers the majority of the formation windows predicted from the individual source rock samples. In addition, the molecular characteristics of asphaltene‐derived hydrocarbons show that compositional characteristics, such as aromaticity, correspond more closely to natural oils than to the respective source‐rock products. Our results confirm that the heterogeneous nature of the Draupne Formation results in a significantly broader petroleum formation window than is conventionally assumed. We propose that oil and tar‐mat asphaltenes from related reservoirs represent macromolecules which account for this heterogeneity in the source rock, since they represent mixtures of charges from the different organofacies. One conclusion is that the use of oil and tar‐mat asphaltenes in kinetic studies and compositional predictions may significantly improve definitions of petroleum formation characteristics in basin modelling.  相似文献   

17.
Viscous crude oils and oil sands are important energy resources, but it is difficult to exploit them due to the dominated heavy constituents such as asphaltenes. In this work, the mild oxidative degradation of the heavy constituents (oxidized by NaIO4/NaH2PO4 and 30% H2O2/CH3COOH) has been carried out. In the viscous oils, more than 45% asphaltenes has been degraded, and the asphaltenes are mainly chemically changed into the resin fractions, which is favorable to the stability of viscous crude oils. After the degradation, the total amount of extractable organic compounds from oil sands has been markedly increased than that of the blank experiment. The experimental results indicate that the mild oxidative degradation of asphaltenes can improve the physicochemical properties of the viscous oils and oil sands, which is particularly in favor of the exploitation of these energy resources.  相似文献   

18.
Abstract

The high cost of remediating asphaltene deposition in crude oil production and processing has necessitated the development of test methods for determining the stability of asphaltenes in crude oils. In the current work, the stability of asphaltenes in crude oils of varying API gravity is predicted using the Oliensis Spot Test, the Colloidal Instability Index, the Asphaltene–Resin ratio, and a solvent titration method with NIR solids detection. The test methods are described in detail and experimental data from them presented. The experimental stability data were validated via correlation with field deposition data. The effectiveness of the various tests as predictors of the stability of asphaltenes in oils is discussed. The Colloidal Instability Index and the solvent titration method were found to predict a crude oil's propensity towards asphaltene precipitation better than both the Asphaltene–Resin ratio and the Oliensis Spot Test. For oils with low asphaltene content where most stability tests fail, live oil depressurization is proposed as the test for predicting the stability of asphaltenes.  相似文献   

19.
选用4种模型化合物代表减压渣油四组分(SARA),采用分子动力学模拟了减压渣油微观相结构,发现不同结构分子间相互作用的差异是减压渣油微观非均匀分布的本质原因,并通过电子分布特性分析了不同结构分子间相互作用差异的本质原因。沥青质分子间强相互作用使得沥青质分子自缔合形成聚集体;而多个胶质分子与沥青质分子的强相互作用封闭了沥青质分子自身进一步发生相互作用的活性位;同时,与胶质分子、饱和烃分子具有强相互作用的芳香烃分子将沥青质 胶质分子形成的聚集体分散在由芳香烃 饱和烃分子构成的连续相内,其中芳香烃分子更靠近胶质分子。因此,增加沥青质、饱和烃分子的含量会促进沥青质聚集,降低减压渣油稳定性;增加胶质、芳香烃分子的含量会阻碍沥青质聚集,提高减压渣油稳定性。  相似文献   

20.
Knowledge of the properties and behavior of asphaltenes and resins is indispensable for the design of preventive and curative measure for emulsion problems created by the presence of asphaltene, resins, and other organic and inorganic solids. In order to understand the phenomena of water-oil emulsions formed in Kuwaiti oil fields and determine the factors involved in the stabilization of these emulsions, the role of asphaltenes, resins and wax separated from various samples of oil field emulsions formed in Burgan oil field have been evaluated. Physicochemical properties of asphaltenes, resins, wax, and de-asphalted de-resined (DADR) oil samples have been studied via FT-IR, 1H, and 13C NMR, elemental analysis, and differential scanning calorimetry (DSC). These emulsion samples contain different amounts of water ranges from 24 to 35%, asphaltene content ranges from 0.9 to 1.7%, and resin content from 3.7 to 4.6%. IR-FT spectra were performed to identify the various functional groups which have an effect on the stability of water-oil emulsions. The freezing behavior of an emulsion was characterized by differential scanning calorimetry to determine whether the water in the emulsion is free water or emulsified water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号