首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Modification of the surface properties of polyethylene (PE) films is studied using air dielectric barrier discharge at atmospheric pressure. The treated samples are examined by Water contact angle measurements, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). With the increase in treating time, the water contact angle changes from 93.2° before treatment to a minimum of 53.3° after a treatment for 50 s. Both ATR and XPS results show some oxidized species are introduced into the sample surface by the plasma treatment and the tendency of the water contact angle with the treating time is the same as that of oxygen concentration on the treated sample surface. SEM result shows the surface roughness of PE samples increases with the treatment time increasing.  相似文献   

2.
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment, The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CHa and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.  相似文献   

3.
The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.  相似文献   

4.
This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120 μm and the surface titanium concentration gradually decreases from ω (Ti) = 87% to ω (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV-800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.  相似文献   

5.
The principle of surface wave plasma discharge in a rectangular cavity is introduced and the distribution of the electromagnetic field within a rectangular waveguide is analysed. A novel structure of a slot antenna array is presented. In comparison with the traditional slotantenna, it is shown that the designed slot antenna array can excite effectively the surface wave coupling into the chamber, and generate a stable large-area high-density plasma. These results are useful for exploring the optimized design of the slot-antenna for surface wave plasmas.  相似文献   

6.
Plasma surface modification of the inner wall of a slender tube is quite difficult to achieve using conventional means. In the work described here, an inner coaxial radio frequency (RF) copper electrode is utilized to produce the plasma and also acts as the sputtered target to deposit copper films in a tube. The influence of RF power, gas pressure, and bias voltage on the distribution of plasma density and the uniformity of film thickness is investigated. The experimental results show that the plasma density is higher at the two ends and lower in the middle of the tube. A higher RF power and pressure as well as larger tube bias lead to a higher plasma density. Changes in the discharge parameter only affect the plasma density uniformity slightly. The variation in the film thickness is consistent with that of the plasma density along the tube axis for different RF power and pressure. Although the plasma density increases with higher tube biases, there is an optimal bias to obtain the highest deposition rate. It can be attributed to the reduction in self-sputtering of the copper electrode and re-sputtering effects of the deposited film at higher tube biases.  相似文献   

7.
The effects of remote nitrogen plasma and nitrogen plasma on medical PVC's surface modification are studied. The surface properties are characterized by the contact angle measurement, X-ray photoelectron spectroscopy and scanning electron microscopy. Results show that the remote nitrogen plasma treatments modify the PVC surface in both morphology and composition and the treatment by the remote nitrogen plasma in PVC surface modification is more effective than that by the nitrogen plasma. Remote nitrogen plasma can modify the surface more uniformly. After the PVC surface is treated for 2 man by remote nitrogen plasma, the [w(O)+ w (N)]/w (C)] value increases from 0.13 to 0.51 and the water contact angle decreases from 89° to 18 .  相似文献   

8.
By means of a coaxial apparatus, microsecond charging have been carried out with ferent ethylene glycol concentrations of ethylene pressurized water breakdown experiments with different surface roughness of electrodes and difglycol/water mixture. The experimental results about the breakdown stress and the effective time are presented. The breakdown stress is normalized to the situation that the effective time is transformed to 1 μs and analyzed. The conclusions are as follows: (1) the breakdown stress formula is modified to E = 0.561MA^-1/10teff^-1/^NP^1/8 ;(2) the coefficient M is significantly increased by surface polishing and ethylene glycol additive; (3) it is accumulative for the capacity of improving electrical breakdown strength for surface polishing, ethylene glycol additive, and pressurization, of which pressurization is the most effective method; (4) the highest stress of 235.5 kV/cm is observed in ethylene glycol/water mixture with an ethylene glycol concentration of 80% at a hydrostatic pressure of 1215.9 kPa and is about one time greater than that in pure water at constant pressure; (5) for pressurization and surface polishing, the primary mechanism to improve the breakdown strength of water dielectric is the increase in the breakdown time delay. Research results indicate great potential in the application of the high power pulse conditioning system of water dielectric.  相似文献   

9.
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle(WCA),chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 m J m~(-2)to 66.28 m J m~(-2).Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.  相似文献   

10.
The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,  相似文献   

11.
Polymer ethylene oxide (PEO) functional films can be used as a material for biocompatible research. In this paper, we investigated the structures of PEO-like films polymerized on Si surface with diethlyene glycole dimethyl ether (DEGDME) as the precursor and Ar as the dilution gas by plasma enhanced chemical vapor deposition (PECVD). And the pulse plasma model was employed to polymerize the functional films. The chemical structure of the coatings was investigated by Fourier transform inference (FTIR) and X-ray photoelectron spectroscopy (XPS). The results indicate that PEO-like structure films can be polymerized by DEGDME/Ar plasma. The concentration of C-O functional groups polymerized in the long plasma-off time was much higher than that in the short plasma-off time. With the same discharge parameters, moreover, the C-O ratio in polymers increased with a higher injected power.  相似文献   

12.
Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)  相似文献   

13.
Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1. 71 × 10^15 /cm^3 to 6.64 × 10^15 /cm^3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma.  相似文献   

14.
In this paper, the characterization of thin films, deposited with the precursor ferrocene (FcH) by the plasma enhanced chemical vapour deposition (PECVD) technique, was investigated. The films were measured by Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM), Electron Spectroscopy for Chemical Analysis (ESCA), and Superconducting Quantum Interference Device (SQUID). It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks. The surface roughness is about 36 nm. From the results of ESCA, it can be inferred that the film mainly contains the compound FeOOH, and carbon is combined with oxygen in different forms under different supply-powers. The hysteresis loops indicate that the film is of soft magnetism.  相似文献   

15.
A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space formed by the graphite electrode, the molten bath and unmelted raw materials. The model is first used to solve a similar problem in a steel making furnace, and the calculated results are found to be in good agreement with the published measurements. The behavior of arcs with different arc lengths is also studied in the furnace for MgO production. From the distribution of the arc pressure on the bath surface it is shown that the arc plasma impingement is large enough to cause a crater-like depression on the surface of the MgO bath. The circulation of the high temperature air under the electrode may enhance the arc efficiency, especially for a shorter arc.  相似文献   

16.
Atmospheric high frequency cold plasma jet was applied to modify Ni/SiO2 catalysts. The catalysts prepared by two different methods with plasma jet were compared with conventional catalysts. BET, XRD, H2-TPD and high-resolution transmission electron microscopy (HRTEM) were used to characterize these catalysts. The results showed that the catalyst prepared with plasma jet had higher nickel dispersion, larger specific surface area and smaller nickel particle size, about 5 nanometres. Detailed analyses revealed that improved structure and characteristic of the plasma catalyst were benefited from the large amount of hydrogen atoms in the plasma jet, by which the catalyst reduction can be easily achieved in shorter period of time at lower temperature, thus avoiding sintering and conglomeration of the active particles and the support. The activity of catalysts was investigated in the methane reforming with CO2. It is shown that the conversions of CH4 and CO2, the yields of H2 and CO were all significantly increased for the plasma catalysts.  相似文献   

17.
The interaction of laser-induced plasma and bow shock over a blunt body is inves-tigated numerically in an M∞ =6.5 supersonic flow.A ray-tracing method is used for simulating the process of laser focusing.The gas located at the focused zone is ionized and broken down and transformed into plasma.In a supersonic flow the plasma moves downstream and begins to interact with the bow shock when it approaches the surface of the blunt body.The parameters of flowfield and blunt body surface are changed due to the interaction.By analyzing phenomena occurring in the complex unsteady flowfield during the interaction in detail,we can better under-stand the change of pressure on the blunt body surface and the mechanism of drag reduction by laser energy deposition.The results show that the bow shock is changed into an oblique shock due to the interaction of the laser-induced low-density zone with the bow shock,so the wave drag of the blunt body is reduced.  相似文献   

18.
In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with 03 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after 03 regeneration. 03 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cy- cles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after 03 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that 03 regeneration has a lower weight loss than DBD plasma regeneration.  相似文献   

19.
We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential.Starting from a quantum hydrodynamic model coupled to the Poisson equation,we derive the general dispersion relation for surface plasma waves.Previous results in this context are recovered.The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma.It is found that the CE effects significantly modify the behaviors of the SP waves.The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.  相似文献   

20.
In this paper, characteristics of a treatment and operated at atmospheric pressure dual torch plasma arc used for hazardous waste are studied, and also compared with those of the multi-torch plasma arc and the single torch plasma arc. The dual torch plasma arc is generated between the cathode and anode with argon as the working gas. The temperature distributions of the plasma arc are measured using a spectroscope and line pair method with the assumption of local thermodynamic equilibrium (LTE) for the DC arc current I=100 A and argon flow rate Q = 15 slpm. The measurements show that the temperatures of the dual torch arc plasma in the regions near the cathode, the anode and the center point are 10,000 K, 11,000 K and 9,000 K, respectively. And the high temperature region of the multi torch plasma arc is of double or much wider size than that of a conventional dual torch plasma arc and single plasma torch. Based on the preceding studies, a dual torch plasma arc furnace is developed in this study. The measured gas temperature at the center region of the argon arc is about 11,000 K for the case of I=200 A and Q=30 slpm operated in atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号