首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
In the Eulerian approach to model gas-solid fluidized beds closures are required for the internal momentum transfer in the particulate phase. Firstly, two closure models, one semi-empirical model assuming a constant viscosity of the solid phase (CVM) and a second model based on the kinetic theory of granular flow (KTGF), have been compared in this part in their performance to describe bubble formation at a single orifice and the time-averaged porosity profiles in the bed using experimental data obtained for a pseudo two-dimensional fluidized bed operated with a jet in the center. Numerical simulations have shown that bubble growth at a nozzle with a jet is mainly determined by the drag experienced by the gas percolating through the compaction region around the bubble interface, which is not much influenced by particle-particle interactions, so that the KTGF and CVM give very similar predictions. However, this KTGF model does not account for the long term and multi particle-particle contacts (frictional stresses) and under-predicts the solid phase viscosity at the wall as well as around the bubble and therefore over-predicts the bed expansion. Therefore, in the later part of the paper, the bubble growth at a single orifice and the time-averaged porosity distribution in the bed predicted by the KTGF model with and without frictional stresses are compared with experimental data. The model predictions by the KTGF are improved significantly by the incorporation of frictional stresses, which are however strongly influenced by the empirical parameters in this model. In Part II the comparison of the CVM and KTGF with experimental results is extended to freely bubbling fluidized beds.  相似文献   

2.
3.
基于双流体模型,应用Fluent商业软件包对带有单喷嘴的二维鼓泡床中气固两相流进行模拟研究。采用三种基于不同机理的曳力模型;半经验的Gidaspow模型、由格子波尔兹曼方法导出的Koch-Hill模型与修正的半经验的McKeen模型,通过模拟气泡的形成、上升及破裂过程,气泡形状和颗粒运动特征,计算气体泄漏率、气泡直径及气泡上升速度,对不同曳力模型进行比较研究,其中编程实现了Koch-Hill和McKeen曳力模型模块。通过与文献中的实验结果进行对比发现,Gidaspow模型对气泡形状的模拟效果较好,与实验数据的误差介于其他两种模型之间;Koch-Hill模型捕捉到的气泡特征最逼真,且床层膨胀效果明显,但定量计算的误差最大;而McKeen模型与实验数据的误差最小,但对气泡形状的模拟效果较差。  相似文献   

4.
The behaviour of a gas-solid flow in a bubbling fluidized bed operated near the minimum fluidization condition is strongly influenced by the frictional stresses between the particles, these being highly concentrated and their motion dominated by enduring contact among them and with the walls.The effect of the introduction of frictional stresses in a Eulerian-Eulerian two fluid model based on the kinetic theory of the granular flow is evaluated. The models of Johnson and Jackson [1987. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics 176, 67-93], Syamlal et al. [1993. Mfix documentation: volume I, theory guide. Technical Report DOE/METC-9411004, NTIS/DE9400087, National Technical Information Service, Springfield, VA], and Srivastava and Sundaresan [2003. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology 129, 72-85] are compared with the kinetic theory of the granular flow and with experimental data both in a bubbling fluidized bed with a central jet and in a bubbling fluidized bed with a porous distributor. The predicted evolution of the bubble diameter along the height of the fluidized beds is examined, the shapes of the bubbles predicted by the models are compared and the evolution in time of the bubbles is shown. In the case of the bed with a central jet, the bubble detachment time is also calculated. The results show that the introduction of a frictional stress model improves the prediction of the bubbles diameter in a bubbling fluidized bed with a central jet and positively affects the bubbles diameter distribution in a uniformly fed bubbling fluidized bed. The high sensitivity of the model to the value of the particulate phase fraction at which frictional stresses start to be accounted for is pointed out through a sensitivity analysis performed on the Srivastava and Sundaresan [2003. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology 129, 72-85] model.  相似文献   

5.
Two different approaches to constitutive relations for filtered two‐fluid models (TFM) of gas–solid flows are deduced. The first model (Model A) is derived using systematically filtered results obtained from a highly resolved simulation of a bubbling fluidized bed. The second model (Model B) stems from the assumption of the formation of subgrid heterogeneities inside the suspension phase of fluidized beds. These approaches for the unresolved terms appearing in the filtered TFM are, then, substantiated by the corresponding filtered data. Furthermore, the presented models are verified in the case of the bubbling fluidized bed used to generate the fine grid data. The numerical results obtained on coarse grids demonstrate that the computed bed hydrodynamics is in fairly good agreement with the highly resolved simulation. The results further show that the contribution from the unresolved frictional stresses is required to correctly predict the bubble rise velocity using coarse grids. © 2013 American Institute of Chemical Engineers AIChE J, 60: 839–854, 2014  相似文献   

6.
以带冷却盘管的大型高温费托流化床反应器为研究对象,开展三维计算流体力学模拟研究。传统双流体模型基于局部平均的假设,认为单位控制体内气固两相均匀分布,网格尺寸必须足够小才能正确揭示局部非均匀结构的所有细节。采用双流体模型模拟大型工业化流化床装置时,将导致网格数量过于庞大,远超现有计算能力。为提高计算效率的同时不损失模拟精度,提出了基于局部非均匀假设、适用于粗网格的拟泡-乳三相非均匀曳力(PBTD)模型。该模型将流化床分为乳化相气体、乳化相颗粒以及气泡三相,分别建立守恒方程,体现气泡的非均匀特性对气固曳力的影响。乳化相内气固曳力以及气泡相与乳化相内颗粒的曳力分开考虑。采用PBTD模型耦合传质和反应模型,建立基于局部非均匀假设的高温费托合成反应器三维流动-传递-反应模型,包括各相守恒控制方程、气泡尺寸模型、相间物质和动量交换模型、高温费托合成反应动力学模型以及初始和边界条件,预测反应器内的流场和组分浓度分布。研究结果表明:在粗网格条件下,非均匀曳力模型可以预测床层内相含率的分布情况,预测的床层膨胀高度与经验公式计算值接近,偏差为1.2%。反应器出口气体组分的质量分数与试验测量值相近,偏差在1.5%~16.0%。模拟结果证实,基于非均匀假设的PBTD模型适用于模拟工业规模的鼓泡流化床反应器,对其设计开发和工业运行具有指导价值。  相似文献   

7.
The two-fluid model based on the kinetic theory of granular flow is considered to be a fundamental tool for modeling gas–solid fluidized beds and has been extensively used for the last couple of decades. However its verification and quantitative validation still remain insufficient for a wide range of reactor geometries and operating conditions. In this study simulations were performed using the two-fluid model for two-dimensional (2D) bubbling gas–solid fluidized beds with and without immersed horizontal tubes. The bubble characteristics – aspect ratio, shape factor, diameter and rise velocity – predicted by the simulation were compared and validated with experimental data obtained from pseudo-2D fluidized beds using digital image analysis technique. The predicted bubble shape and diameter were in good agreement with the experimental data for fluidized beds with and without immersed tubes. The simulation predicted higher bubble rise velocity compared to the experimental results obtained. This was due to the wall effect, which was not taken into consideration during the 2D simulation. In addition the influences of different drag laws, friction packing limits and solid-wall boundary conditions on the different bubble properties were investigated. The results showed that the choice of friction packing limits, drag laws and specularity coefficients have little influence on bubble properties.  相似文献   

8.
9.
Drying of nylon (Geldart D) and expanded polystyrene (Geldart B) particles in fixed and fluidized beds were studied experimentally and theoretically. Fluidized bed dryers are sometimes operated at velocities beyond bubbling fluidization to mitigate against de‐fluidization of surface wet particles. It was found that theoretical analysis using three different drying methods could predict the constant‐drying rate at such velocities and also across the entire fluidization regimes (fixed bed, bubbling, slugging and turbulent fluidization) as long as the bed remains completely fluidized. Results also showed that the theoretical predictions were accurate beyond previously reported velocity limits in a laboratory scale dryer. During bubbling fluidization, the cross flow factor method was used effectively to predict the influence of bubble phase on drying rates. In the falling‐rate period, it is demonstrated that the drying behaviour of nylon at different gas velocities can be characterised by a single normalized drying curve.  相似文献   

10.
佟颖  Ahmad Nouman  鲁波娜  王维 《化工学报》2019,70(5):1682-1692
双分散气固鼓泡流化床中颗粒通常具有不同粒径或密度,导致产生颗粒偏析等现象,影响传递和反应行为。颗粒分离和混合与气泡运动密不可分,其中相间曳力起关键作用。最近Ahmad等提出了一种基于气泡结构的双分散介尺度曳力模型,能成功预测双分散鼓泡流化床的床层膨胀系数。本研究耦合该曳力模型与连续介质方法,模拟了两种不同的双分散鼓泡流化床,通过分析不同流化状态下的气泡运动、颗粒浓度比的轴向分布等参数,进一步检验模型的适用性。研究表明,当双分散颗粒处于完全流化状态时,耦合双分散介尺度曳力模型可合理预测不同颗粒的分离现象;而其处于过渡流化状态时,新曳力模型和传统模型均无法获得合理结果,此时调节固固曳力可改进模拟结果。  相似文献   

11.
Mesoscale bubbles exist inherently in bubbling fluidized beds and hence should be considered in the constitutive modeling of the drag force. The energy minimization multiscale bubbling (EMMS/bubbling) drag model takes the effects of mesoscale structures (i.e., bubbles) into the modeling of drag coefficient and thus improves the coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on the bubble diameter correlation has not been thoroughly investigated. The hydrodynamic disparity between homogeneous and heterogeneous fluidization is accounted for by the heterogeneity index,Hd, which can be affected by choice of bubble diameter correlation. How this choice of bubble diameter correlation influences the model prediction calls for further fundamental research. This article incorporated seven different bubble diameter correlations into EMMS/bubbling drag model and studied their effects onHd. The performance of these correlations has been compared with the correlation used previously by EMMS/bubbling drag model. We found that some of the correlations predicted lower Hd by order of a magnitude than the correlation used by the original EMMS/bubbling drag. Based on such analysis, we proposed a modification in the EMMS drag model for bubbling and turbulent fluidized beds. A computational fluid dynamics (CFD) simulation using two-fluid model with the modified EMMS/bubbling drag model was performed for two bubbling and one turbulent fluidized beds. Voidage distribution, time averaged solid concentration and axial solid concentration profiles were studied and compared with the previous version of the EMMS/bubbling drag model and experimental data. We found that the right choice of bubble diameter correlations can significantly improve the results for CFD simulations.  相似文献   

12.
Numerical simulations of gas-particles flow in a bubble fluidized bed with two large eddy simulations of gas and solid phases are presented. For gas phase and solid phase, the sub-grid scale model for the viscosity is based on the Smagorinsky form. The sub-grid model for the particle pressure proposed by Igci et al. (2008) is modified by replacing the minimum fluidization velocity. The collisional interaction of particles is considered by the kinetic theory of granular flow. Flow behavior of gas and particles is performed by means of these two sub-grid scale models. The subgrid closure for the particle phase viscosity and pressure led to a qualitative change in the simulation results. Predictions are compared with experimental data measured by Yuu et al. (2000) and Taghipour et al. (2005) in the bubbling fluidized beds. The distributions of concentration and velocity of particles are predicted in the bubbling fluidized bed. The predicted filtered particle phase pressure increases and the filtered particle phase viscosity decreases with the increase of particle concentration. The qualitative importance of the model constant cs of particles is demonstrated.  相似文献   

13.
A phenomenological discrete bubble model has been developed for freely bubbling dense gas–solid fluidized beds and validated for a pseudo‐two‐dimensional fluidized bed. In this model, bubbles are treated as distinct elements and their trajectories are tracked by integrating Newton's equation of motion. The effect of bubble–bubble interactions was taken into account via a modification of the bubble velocity. The emulsion phase velocity was obtained as a superposition of the motion induced by individual bubbles, taking into account bubble–bubble interaction. This novel model predicts the bubble size evolution and the pattern of emulsion phase circulation satisfactorily. Moreover, the effects of the superficial gas velocity, bubble–bubble interactions, initial bubble diameter, and the bed aspect ratio have been carefully investigated. The simulation results indicate that bubble–bubble interactions have profound influence on both the bubble and emulsion phase characteristics. Furthermore, this novel model may become a valuable tool in the design and optimization of fluidized‐bed reactors. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
A new model is proposed for obtaining the velocity profile of the particle ejected from the bubble dome in a freely bubbling 2-D fluidized bed. Its basis is the supposition that the initial velocity of the ejected particles, with a direction perpendicular to the dome contour, depends on bubble velocity and bubble growth velocity. This model differs from those previously appearing in the literature in that it is valid not only for vertical-ascent circular bubbles.Experiments were carried out in a freely bubbling 2-D fluidized bed using a high-speed video camera to measure the velocity profile. Upon comparing these results with the proposed model, it was established that, excepting some isolated cases, the model properly predicts the magnitude and direction of the maximum particle ejection velocity and the velocity profile.Using the work of Shen et al. (2004. Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds. Chemical Engineering Science 59, 2607-2617), we obtain two general equations for the bubble velocity and the bubble growth velocity in a 2-D fluidized bed. These expressions, together with the proposed model, can be used to calculate the initial velocity of the ejected particles.  相似文献   

15.
The bubbling fluidized bed reactor is widely used in fast pyrolysis of biomass. Discrete simulation of this reactor is challenging due to many sand particles and lack of accurate drag corrections accounting for the interaction of two different solid particles with different properties. In this research, the computational cost is reduced by using the coarse-grained computational fluid dynamic-discrete element method, where many sand particles are lumped into a larger numerical parcel. The Syamlal–O'Brien drag model is used for sand, while Ganser correction coupled with Gidaspow model is used for the nonspherical biomass particles. This hybrid approach shows superior behavior over other drag models using pressure drops as a benchmark. The predicted bed height and pressure fluctuating frequencies compare well with experiment. The mixing of biomass is close to perfect if the superficial velocity is larger than four times the minimum fluidization velocity.  相似文献   

16.
在二维双组分鼓泡床实验装置上,采用高速摄像技术,对床内气泡的形状特性进行了研究,考察了不同形状气泡在床内的轴径向分布,探索了颗粒组成和操作气速对气泡形状的影响。结果表明:不同形状的气泡在鼓泡床内呈正态分布,球形度较好的气泡主要分布于床层底部和壁面附近,而细长的气泡则主要集中于床层中心区域。随着气体速率的增加,气泡的球形度和宽纵比降低,气泡形状趋于细长和不规则;随着重组分增加,气泡的球形度增大而宽纵比减小。双组分颗粒鼓泡流化床内气泡球形度的概率密度较单组分的分布更宽,而宽纵比的概率密度分布与添加的颗粒密度有关。  相似文献   

17.
An EMMS/bubbling model for gas–solid bubbling fluidized bed was proposed based on the energy-minimization multi-scale (EMMS) method (Li and Kwauk, 1994). In this new model, the meso-scale structure was characterized with bubbles in place of clusters of the original EMMS method. Accordingly, the bubbling fluidized bed was resolved into the suspending and the energy-dissipation sub-systems over three sub-phases, i.e., the emulsion phase, the bubble phase and their inter-phase in-between. A stability condition of minimization of the energy consumption for suspending particles (Ns→min) was proposed, to close the hydrodynamic equations on these sub-phases. This bubble-based EMMS model has been validated and found in agreement with experimental data available in literature. Further, the unsteady-state version of the model was used to calculate the drag coefficient for two-fluid model (TFM). It was found that TFM simulation with EMMS/bubbling drag coefficient allows using coarser grid than that with homogeneous drag coefficient, resulting in both good predictability and scalability.  相似文献   

18.
针对特定颗粒浓度范围颗粒团聚作用导致的曳力下降问题,基于传统曳力模型在不同颗粒浓度段的特性分析,选择适用于不同颗粒浓度区间的曳力模型,通过光滑函数得到改进的曳力模型,并耦合欧拉双流体模型对2D鼓泡流化床进行数值模拟. 结果表明,与Gidaspow和Syamlal-O'Brien模型相比,改进的曳力模型对床层局部压降的预测结果更好;随表观气速增加,改进的曳力模型能更准确地预测床层膨胀;当表观气速Ug=0.46 m/s时,改进的曳力模型对径向颗粒浓度分布的模拟结果明显好于Syamlal-O'Brien模型.  相似文献   

19.
Computational fluid dynamics—discrete element method (CFD‐DEM) simulations were conducted and compared with magnetic resonance imaging (MRI) measurements (Boyce, Rice, and Ozel et al., Phys Rev Fluids. 2016;1(7):074201) of gas and particle motion in a three‐dimensional cylindrical bubbling fluidized bed. Experimental particles had a kidney‐bean‐like shape, while particles were simulated as being spherical; to account for non‐sphericity, “effective” diameters were introduced to calculate drag and void fraction, such that the void fraction at minimum fluidization (εmf) and the minimum fluidization velocity (Umf) in the simulations matched experimental values. With the use of effective diameters, similar bubbling patterns were seen in experiments and simulations, and the simulation predictions matched measurements of average gas and particle velocity in bubbling and emulsion regions low in the bed. Simulations which did not employ effective diameters were found to produce vastly different bubbling patterns when different drag laws were used. Both MRI results and CFD‐DEM simulations agreed with classic analytical theory for gas flow and bubble motion in bubbling fluidized beds. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2555–2568, 2017  相似文献   

20.
This work proposes a novel population-balance based model for a bubbling fluidized bed reactor. This model considers two continuum phases: bubble and emulsion. The evolution of the bubble size distribution was modeled using a population balance, considering both axial and radial motion. This sub-model involves a new mathematical form for the aggregation frequency, which predicts the migration of bubbles from the reactor wall toward the reactor center. Additionally, reacting particles were considered as a Lagrangian phase, which exchanges mass with emulsion phases. For each particle, the variation of the pore size distribution was also considered. The model presented here accurately predicted the experimental data for biochar gasification in a lab-scale bubbling fluidized bed reactor. Finally, the aggregation frequency is shown to serve as a scaling parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号