首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobic organisms possess a number of often overlapping and well-characterized defenses against common oxidants such as superoxide and hydrogen peroxide. However, much less is known of mechanisms of defense against halogens such as chlorine compounds. Although chlorine-based oxidants may oxidize a number of cellular components, sulfhydrl groups are particularly reactive. We have, therefore, assessed the importance of intracellular glutathione in protection of Escherichia coli cells against hydrogen peroxide, hypochlorous acid, and chloramines. Employing a glutathione-deficient E. coli strain (JTG10) and an otherwise isogenic glutathione-sufficient E. coli strain (AB1157), we find that glutathione-deficient organisms are approximately twice as sensitive to killing by both hydrogen peroxide and chlorine compounds. However, the mode of protection by glutathione in these two cases appears to differ: exogenous glutathione added to glutathione-deficient E. coli in amounts equal to those which would be present in a similar suspension of the wild-type bacteria fully restored resistance of glutathione-deficient bacteria to chlorine-based oxidants but did not change resistance to hydrogen peroxide. Furthermore, in protection against chlorine compounds, oxidized glutathione is almost as effective as reduced glutathione, implying that the tripeptide and/or oxidized thiol undergo further reactions with chlorine compounds. Indeed, in vitro, 1 mol of reduced glutathione will react with approximately 3.5 to 4.0 mol of hypochlorous acid. We conclude that glutathione defends E. coli cells against attack by chlorine compounds and hydrogen peroxide but, in the case of the halogen compounds, does so nonenzymatically and sacrificially.  相似文献   

2.
Krishnakumari V  Singh S  Nagaraj R 《Peptides》2006,27(11):2607-2613
The antibacterial activities of synthetic human beta-defensin analogs, constrained by a single disulfide bridge and in the reduced form, have been investigated. The peptides span the carboxy-terminal region of human beta-defensins (HBD-1-3), which have a majority of cationic residues present in the native defensins. The disulfide constrained peptides exhibited activity against Escherichia coli and Staphylococcus aureus whereas the reduced forms were active only against E. coli. The antibacterial activities were attenuated in the presence of increasing concentrations of NaCl and divalent cations such as Ca(2+) and Mg(2+). The site of action was the bacterial membrane. Peptides spanning the carboxy-terminal region of human beta-defensins could be of help in understanding facets of antimicrobial activity of beta-defensins such as salt sensitivity and mechanisms of bacterial membrane damage.  相似文献   

3.
A method is described for the preparation of novel cephalexin-derived furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-containing compounds showing potent antibacterial activity. The binding of these newly synthesized antibacterial agents with metal ions such as cobalt(II), copper(II), nickel(II) and zinc(II) has been studied and their inhibitory properties against various bacterial species such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae are also reported. These results suggest that metal ions to possess an important role in the designing of metal-based antibacterials and that such complexes are more effective against infectious diseases compared to the uncomplexed drugs.  相似文献   

4.
Galactose dialdehyde: the forgotten candidate for a protein cross-linker?   总被引:31,自引:0,他引:31  
Chitosan derivatives with quaternary ammonium salt, such as N,N,N-trimethyl chitosan, N-N-propyl-N,N-dimethyl chitosan and N-furfuryl-N,N-dimethyl chitosan were prepared using different 96% deacetylated chitosan of M(v) 2.14x10(5), 1.9x10(4), 7.8x10(3). Amino groups on chitosan react with aldehydes to from a Schiff base intermediate. Quaternized chitosan were obtained by reaction of a Schiff base with methyl iodide. The yields, degree of quaternization and water-solubility of quaternized chitosan were influenced by the molecular weight of the chitosan sample. The antibacterial activities of quaternized chitosan against Escherichia coli were explored by calculation of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in water, 0.25 and 0.50% acetic acid medium. Results show the antibacterial activities of quaternized chitosan against E. coli is related to its molecular weight. Antibacterial activities of quaternized chitosan in acetic acid medium is stronger than that in water. Their antibacterial activities is increased as the concentration of acetic acid is increased. It was also found that the antibacterial activity of quaternized chitosan against E. coli is stronger than that of chitosan.  相似文献   

5.
Two mammalian antimicrobial peptides, FA-LL-37 and cecropin P1, were tested for activity against six uropathogens and five Lactobacillus strains by broth microdilution assay. Both peptides inhibited Escherichia coli at 25 microM (FA-LL-39), and 1.56 microM (cecropin P1), Pseudomonas aeruginosa (12.5 microM, and 25 microM), and Klebsiella pneumoniae, (50 microM, and 1.56 microM), but not Enterococcus faecalis and Staphylococcus epidermidis. FA-LL-37 acted bacteriocidally against E. coli and bacteriostatically against the other two Gram-negative organisms. Cecropin P1 was bacteriocidal to all susceptible bacteria. Lactobacilli were resistant to both peptides, with the exception of poultry isolate Lactobacillus fermentum B-54, which was susceptible to FA-LL-37 at 100 microM. The differential activities of these peptides toward Gram-negative uropathogens versus urogenital lactobacilli demonstrate their potential as a topical treatment for urinary tract infections. In addition, production of such peptides in vivo could be a natural mechanism to aid in the maintenance of the lactobacilli-dominated urogenital flora at the expense of pathogens.  相似文献   

6.
A method is described for the preparation of novel cephalexin-derived furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-containing compounds showing potent antibacterial activity. The binding of these newly synthesized antibacterial agents with metal ions such as cobalt(II), copper(II), nickel(II) and zinc(II) has been studied and their inhibitory properties against various bacterial species such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae are also reported. These results suggest that metal ions to possess an important role in the designing of metal-based antibacterials and that such complexes are more effective against infectious diseases compared to the uncomplexed drugs.  相似文献   

7.
RNA polymerase from Escherichia coli was inhibited by long chain fatty acyl CoAs, such as myristoyl CoA (Ki = 17.2 microM), palmitoyl CoA (Ki = 8.9 microM), oleoyl CoA (Ki = 5.5 microM), and stearoyl CoA (Ki = 0.94 microM). The inhibition by these CoA thioesters was non-competitive against nucleoside triphosphates. Short chain fatty acyl CoAs, such as acetyl CoA, propionyl CoA, acetoacetyl CoA, butyryl CoA, and decanoyl CoA, failed to inhibit RNA polymerase. CoA, Na-myristate, Na-palmitate, Na-oleate, Na-stearate, palmitoyl carnitine, and carnitine did not inhibit the enzyme. The inhibition of RNA polymerase by long chain fatty acyl CoAs was competitive against template DNA.  相似文献   

8.
RNase II of Escherichia coli (EC 3.1.4.23) has been purified to apparent homogeneity. The K+-activated diesterase activity against poly(U), which defines RNase II, cochromatographs with activity against T4 mRNA or pulse-labeled E. coli RNA successively on DEAE-cellulose, hydroxyapatite or phosphocellulose, and Sephadex G-150 columns. Activities with both substrates are selectively reduced to less than 2% of the wild type level in a newly isolated mutant strain, S296, or after thermal inactivation in a mutant strain with temperature-sensitive RNase II. RNase II releases 5'-XMP without a lag as its only detectable alcohol-soluble produce from all substrates and has an apparent molecular weight of 80,000 to 90,000 in both nondissociating and sodium dodecyl sulfate-polyacrylamide gels. The pure enzyme shows the standard K+ activation against poly(A), poly(U), or poly(C), but only a slight preference for K+ over Na+ ions with T4 mRNA or pulse labeled E. coli RNA as substrate. Uniformly labeled E. coli rRNA or tRNA is degraded little if at all.  相似文献   

9.
He J  Feng L  Li J  Tao R  Wang F  Liao X  Sun Q  Long Q  Ren Y  Wan J  He H 《Bioorganic & medicinal chemistry》2012,20(5):1665-1670
As potential inhibitors of Escherichia coli pyruvate dehydrogenase complex E1 (PDHc E1), a series of novel 2-methylpyrimidine-4-ylamine derivatives were designed based on the structure of the active site of PDHc E1 and synthesized using 'click chemistry'. Their inhibitory activity in vitro against PDHc E1 and fungicidal activity were examined. Some of these compounds such as 3g, 3l, 3n, 3o, and 5b demonstrated to be effective inhibitors of PDHc E1 from E. coli and exhibited antifungal activity. SAR analysis indicated that both, the inhibitory potency against E. coli PDHc E1 and the antifungal activity of title compounds, could be increased greatly by optimizing substituent groups in the compounds. The structures of substituent group in 5-position on the 1,2,3-triazole and 4-position on the benzene ring in title compounds were found to play a pivotal role in both above-mentioned biological activities. Amongst all the compounds, compound 5b with iodine in the 5-position of 1,2,3-triazole and with nitryl group in the 4-position of benzene ring acted as the best inhibitor against PDHc E1 from E. coli. It was also found to be the most effective compound with higher antifungal activity against Rhizoctonia solani and Botrytis cinerea at the dosage of 100 μg mL(-1). Therefore, in this study, compound 5b was used as a lead compound for further optimization.  相似文献   

10.
A functionally active 17.5 kDa peptidyl-prolyl cis-trans isomerase was purified to homogeneity from Streptomyces chrysomallus, a Gram-positive filamentous bacterium. Characterization of the enzyme revealed inhibition and binding characteristics, against the immunsuppressive drug cyclosporin A, which were similar to cyclophilins from eukaryotes such as mammals, plants, fungi and yeasts, but different from those of cyclophilins from enterobacteria such as Escherichia coli. The amino acid sequence of the S. chrysomallus cyclophilin, as deduced from the gene sequence, revealed a striking degree of amino acid sequence identity with the corresponding 17 kDa proteins of humans (66%), Neurospora (70%) and yeast (69%). Comparison with cyclophilin sequences from the Gram-negative enterobacteria revealed much less homology (25% identity with E. coli b, 23% identity with E. coli a). Cyclophilin was detected in each of the four other Streptomyces species tested. The cyclophilins from the various streptomycetes differed in size, varying between 17 and 20.5 kDa. The cyclophilins were abundant in the Streptomyces cells, and present throughout growth.  相似文献   

11.
A monoclonal antibody against the Yersinia enterocolitica 60-kilodalton (kDa) antigen, designated cross-reacting protein antigen (CRPA), was obtained by cell fusion. The CRPA common to gram-negative bacteria was purified from Y. enterocolitica by the affinity chromatography with the monoclonal antibody (IgG1) thus obtained. The purified CRPA showed a single band of 60 kDa in SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and reacted with rabbit antisera against Y. enterocolitica, Vibrio cholerae, Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei in Western blot analysis. The monoclonal antibody, however, reacted with a 60 kDa peptide from Y. enterocolitica, but not with the antigens from other gram-negative bacteria such as V. cholerae, E. coli, S. sonnei, Salmonella enteritidis, Serratia marcescens, Klebsiella pneumoniae, Proteus mirabilis, and P. aeruginosa. The results suggested that both species-specific and cross-reactive epitopes were present on a CRPA molecule.  相似文献   

12.
House-cleaning enzymes protect cells from the adverse effects of noncanonical metabolic chemical compounds. The Escherichia coli nucleotide phosphatase YjjG (B4374, JW4336) functions as a house-cleaning phosphatase in vivo. YjjG protects the cell against noncanonical pyrimidine derivatives such as 5-fluoro-2'-deoxyuridine (5-FdUridine), 5-fluorouridine, 5-fluoroorotic acid (5-FOA), 5-fluorouracil, and 5-aza-2'-deoxycytidine. YjjG prevents the incorporation of potentially mutagenic nucleotides into DNA as shown for 5-bromo-2'-deoxyuridine (BrdU). Its enzymatic activity in vitro towards noncanonical 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP) is higher than towards canonical thymidine monophosphate (dTMP). The closest homolog in humans, HDHD4, does not show a protective effect against noncanonical nucleotides, excluding an involvement of HDHD4 in resistance against noncanonical nucleotides used for cancer chemotherapy. The substrate spectrum of YjjG suggests that its in vivo substrates are noncanonical pyrimidine derivatives, which might also include oxidized nucleobases such as 5-formyluracil and 5-hydroxyuracil.  相似文献   

13.
The present study examined the antimicrobial activity of the peptide ghrelin. Both major forms of ghrelin, acylated ghrelin (AG) and desacylated ghrelin (DAG), demonstrated the same degree of bactericidal activity against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), while bactericidal effects against Gram-positive Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) were minimal or absent, respectively. To elucidate the bactericidal mechanism of AG and DAG against bacteria, we monitored the effect of the cationic peptides on the zeta potential of E. coli. Our results show that AG and DAG similarly quenched the negative surface charge of E. coli, suggesting that ghrelin-mediated bactericidal effects are influenced by charge-dependent binding and not by acyl modification. Like most cationic antimicrobial peptides (CAMPs), we also found that the antibacterial activity of AG was attenuated in physiological NaCl concentration (150mM). Nonetheless, these findings indicate that both AG and DAG can act as CAMPs against Gram-negative bacteria.  相似文献   

14.
15.
Escherichia coli molecular genetic map (1500 kbp): update II   总被引:15,自引:4,他引:11  
The DNA sequence data for Escherichia coli deposited in the EMBL library (release 27), together with miscellaneous data obtained from several laboratories, have been localized on an updated and corrected version of the restriction map of the chromosome generated by Kohara et al. (1987) and modified by others. This second update adds a further 500 kbp, increasing the amount of the E. coli chromosome sequenced to about one third of the total: 1510 kbp of sequenced DNA is included in the present data base. The accuracy of the map is assessed, and allows us to propose a precise genetic map position for every sequenced gene. The location of rare-cutting sites such as AvrII, NotI and SfiI have also been included in the update in order to combine the data obtained from different sources into one single file. The distribution of palindromic sequences (to which most restriction sites belong) has been studied in coding sequences. There appears to be a significant counter-selection against several such sequences in E. coli coding sequences (but not in other organisms such as Saccharomyces cerevisiae), suggesting the existence of constraints on DNA structure in E. coli, perhaps indicative of a functional role for horizontal gene transfer, preserving coding sequences, in this type of bacteria.  相似文献   

16.
2-Amino-1,3,4-thiadiazole undergoes a condensation reaction with furane-, thiophene- and pyrrole-2-carboxaldehyde to form tridentate NNO, NNS and NNN donor Schiff bases. These Schiff bases were further used to obtain complexes of the type [M(L) 2] X, where M=Co(II), Cu(II), Ni(II) or Zn(II), L=L 1, L 2 or L 3 and X=Cl 2. The new compounds described here have been characterized by their physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of the Schiff bases increased upon chelation/complexation in comparison to the uncomplexed Schiff bases against the tested bacterial species thus, opening new approaches to find new ways in the fight against antibiotic-resistant strains.  相似文献   

17.
2-Amino-1,3,4-thiadiazole undergoes a condensation reaction with furane-, thiophene- and pyrrole-2-carboxaldehyde to form tridentate NNO, NNS and NNN donor Schiff bases. These Schiff bases were further used to obtain complexes of the type [M(L)2]X, where M = Co(II), Cu(II), Ni(II) or Zn(II), L = L1, L2 or L3 and X = Cl2. The new compounds described here have been characterized by their physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of the Schiff bases increased upon chelation/complexation in comparison to the uncomplexed Schiff bases against the tested bacterial species thus, opening new approaches to find new ways in the fight against antibiotic-resistant strains.  相似文献   

18.
Discovery of novel classes of Gram-negative antibiotics with activity against multi-drug resistant infections is a critical unmet need. As an essential member of the lipoprotein biosynthetic pathway, lipoprotein signal peptidase II (LspA) is an attractive target for antibacterial drug discovery, with the natural product inhibitor globomycin offering a modestly-active starting point. Informed by structure-based design, the globomycin depsipeptide was optimized to improve activity against E. coli. Backbone modifications, together with adjustment of physicochemical properties, afforded potent compounds with good in vivo pharmacokinetic profiles. Optimized compounds such as 51 (E. coli MIC 3.1 μM) and 61 (E. coli MIC 0.78 μM) demonstrate broad spectrum activity against gram-negative pathogens and may provide opportunities for future antibiotic discovery.  相似文献   

19.
Fallaxin is a 25-mer antibacterial peptide amide, which was recently isolated from the West Indian mountain chicken frog Leptodactylus fallax. Fallaxin has been shown to inhibit the growth of several Gram-negative bacteria including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Here, we report a structure-activity study of fallaxin based on 65 analogs, including a complete alanine scan and a full set of N- and C-terminal truncated analogs. The fallaxin analogs were tested for hemolytic activity and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate resistant S. aureus, (VISA), methicillin-susceptible S. aureus (MSSA), E. coli, K. pneumoniae, and P. aeruginosa. We identified several analogs, which showed improved antibacterial activity compared to fallaxin. Our best candidate was FA12, which displayed MIC values of 3.12, 25, 25, and 50 muM against E. coli, K. pneumoniae, MSSA, and VISA, respectively. Furthermore, we correlated the antibacterial activity with various structural parameters such as charge, hydrophobicity H, mean hydrophobic moment mu(H), and alpha-helicity. We were able to group the active and inactive analogs according to mean hydrophobicity H and mean hydrophobic moment mu(H). Far-UV CD-spectroscopy experiments on fallaxin and several analogs in buffer, in TFE, and in membrane mimetic environments (small unilamellar vesicles) indicated that a coiled-coil conformation could be an important structural trait for antibacterial activity. This study provides data that support fallaxin analogs as promising lead structures in the development of new antibacterial agents.  相似文献   

20.
The proteins encoded in the yicI and yihQ gene of Escherichia coli have similarities in the amino acid sequences to glycoside hydrolase family 31 enzymes, but they have not been detected as the active enzymes. The functions of the two proteins have been first clarified in this study. Recombinant YicI and YihQ produced in E. coli were purified and characterized. YicI has the activity of alpha-xylosidase. YicI existing as a hexamer shows optimal pH at 7.0 and is stable in the pH range of 4.7-10.1 with incubation for 24h at 4 degrees C and also is stable up to 47 degrees C with incubation for 15 min. The enzyme shows higher activity against alpha-xylosyl fluoride, isoprimeverose (6-O-alpha-xylopyranosyl-glucopyranose), and alpha-xyloside in xyloglucan oligosaccharides. The alpha-xylosidase catalyzes the transfer of alpha-xylosyl residue from alpha-xyloside to xylose, glucose, mannose, fructose, maltose, isomaltose, nigerose, kojibiose, sucrose, and trehalose. YihQ exhibits the hydrolysis activity against alpha-glucosyl fluoride, and so is an alpha-glucosidase, although the natural substrates, such as alpha-glucobioses, are scarcely hydrolyzed. alpha-Glucosidase has been found for the first time in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号