首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This study investigated two wildtype green algae, Micractinium sp. and Chlorella sp., for their growth in high nitrogen wastewater (mixture of sludge centrate and primary effluent wastewater) and subsequent anaerobic digestion under mesophilic conditions. Extraction and analysis of extracellular polymeric substances (EPS) in both algal species during cultivation showed that Micractinium generated larger quantity of EPS-proteins than Chlorella. Anaerobic digestion of harvested algae showed the opposite trend that Chlorella allowed a higher CH4 yield on the volatile solids fed the digester (VSfed) of 230 dm3 kg−1 than Micractinium (209 dm3 kg−1). These results suggested that different growth patterns of two types of algae, with different quantity of EPS expressed, affected anaerobic digestibility and biogas yield. Co-digestion of algae with waste activated sludge (WAS) improved the volatile solids reduction, hydrolysis efficiency as well as the biogas yields of algae.  相似文献   

2.
Effects of anaerobic pre-treatment were evaluated on the dewatered-sewage sludge from a municipal wastewater treatment plant in order to improve its biodegradability through anaerobic digestion. The pre-treatment was conducted in laboratory scale at 25, 50 and 70 °C for an incubation time of two days. As a reference, sludge sample was also autoclaved at 121 °C for 20 min to determine the thermal effect to the subsequent sludge digestion. Characteristics of dewatered-sludge such as viscosity, pH and soluble chemical oxygen demand (SCOD) were affected by the pre-treatment. A higher SCOD after the pre-treatment did not necessarily imply an increase in methane yield, although initial biodegradability rate was improved. In fact, a ‘great’ improvement in SCOD concentration (up to 27%) was translated in only 8% increase in the methane yield (298 ± 9 and 276 ± 6 Nml CH4 gVSadded?1 for pre-treated and untreated samples, respectively). Increasing the anaerobic pre-treatment time from 12 h to 2 days at 50 °C led to an 11% improvement in methane yield. Methane content in biogas increased from an average of 65–69% for the pre-treated and untreated substrates, respectively. Volatile solids (VS) reduction increased from 42% to 51%. The overall digestion time was not affected by the pre-treatment but 90% of methane was produced in the first 12 days of incubation for 50 °C pre-treated samples whereas it took 2–5 days more for 25, 70 °C pre-treated and untreated sludge samples. In this study, thermophilic digestion was also found to be a better option in terms of faster digestion and higher VS-reduction, but it showed lower methane yield as compared to mesophilic digestion, i.e. 9% and 11% increment in methane yields for thermophilic and mesophilic digestions, respectively.  相似文献   

3.
Blue mussels and reeds were explored as a new biomass type in the Kalmar County of Sweden to improve renewable transport fuel production in the form of biogas. Anaerobic digestion of blue mussels and reeds was performed at a laboratory-scale to evaluate biogas production in a two-stage dry digestion system. The two-stage system consisted of a leach bed reactor and an upflow anaerobic sludge blanket (UASB) reactor. The two-stage system was efficient for the digestion of blue mussels, including shells, and a methane yield of 0.33 m3/kg volatile solids (VS) was obtained. The meat fraction of blue mussels was easily solubilised in the leach bed reactor and the soluble organic materials were rapidly converted in the UASB reactor from which 68% of the methane was produced. However, the digestion of mussels including shells gave low production capacity, which may result in a less economically viable biogas process. A low methane potential, 0.22 m3/kg VS, was obtained in the anaerobic two-stage digestion of reeds after 107 days; however, it was comparable to similar types of biomass, such as straw. About 80% of the methane was produced in the leach bed reactor. Hence, only a leach bed reactor (dry digestion) may be needed to digest reed. The two-stage anaerobic digestion of blue mussels and reeds resulted in an energy potential of 16.6 and 10.7 GWh/year, respectively, from the estimated harvest amounts. Two-stage anaerobic digestion of new organic materials such as blue mussels and reeds can be a promising biomass resource as land-based biomass start to be limited and conflict with food resources can be avoided.  相似文献   

4.
The total energy produced from co-digested food waste and sewage sludge was compared for single phase mesophilic anaerobic digestion producing methane and two-phase hydrogen production followed by methane production. Both single and two-phase reactors were operated at close to optimum conditions. The single phase methaniser had a methane yield of 0.48 m3 methane/kg VS destroyed. The two-phase system had a hydrogen yield of 0.13 m3 hydrogen/kg VS destroyed, and a methane yield of 0.67 m3 methane/kg VS destroyed. Introduction of a hydrogen producing, pre-treatment phase increased the overall VS destruction 69-89%, however the total energy yield decreased by 13.4% due to the low hydrogen yield obtained in the first stage. The release of ammonia in the hydrogeniser was low and so with less alkalinity available, pH control was necessary. It was much higher in the methaniser and adequate to buffer any pH change. This also ensures more nitrogen in the digestate to enhance its value for recycling. The two-stage process is an attractive option where solids destruction is an important consideration but further optimisation of the hydrogen production stage is still required.  相似文献   

5.
Food wastes are typically disposed of in landfills for convenience and economic reasons. However, landfilling food wastes increases the organic content of leachate and the risk of soil contamination. A sound alternative for managing food wastes is anaerobic digestion, which reduces organic pollution and produces biogas for energy recovery. In this study, anaerobic digestion of a common food waste, brown grease, was investigated using a pilot-scale, high-rate, completely-mixed digester (5.8 m3). The digestibility, biogas production and the impact of blending of liquid waste streams from a nearby pulp and paper mill were assessed. The 343-day evaluation was divided into 5 intensive evaluation stages. The organic removal efficiency was found to be 58 ± 9% in terms of COD and 55 ± 8% in terms of VS at a hydraulic retention time (HRT) of 11.6 ± 3.8 days. The removal was comparable to those found in organic solid digesters (45–60%), but at a much shorter HRT. Methane yield was estimated to be 0.40–0.77 m3-CH4@STP kg-VSremoved−1, higher than the typical range of other food wastes (0.11–0.42 m3-CH4@STP kg-VSremoved−1), with a mean methane content of 75% and <200 ppm of hydrogen sulfide in the biogas. The blending of selected liquid wastes from a paper mill at 10 vol% of brown grease slurry did not cause significant reduction in digester performance. Using a pseudo-first-order rate law, the observed degradation constant was estimated to be 0.10–0.19 d−1 compared to 0.03–0.40 d−1 for other organic solids. These results demonstrate that brown grease is a readily digestible substrate that has excellent potential for energy recovery through anaerobic digestion.  相似文献   

6.
Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production.  相似文献   

7.
The pre-treatment of microalgae cell walls is known to be a key factor to enhance methane (CH4) yields during anaerobic digestion. This study investigated the combined effects of two different biomass storage methods and physical pre-treatments on the anaerobic digestion for three different microalgae species. Acutodesmus obliquus, Chlorella vulgaris and Chlorella emersonii were cultivated in 80 L sleevebag photobioreactors (batch mode), and then subjected to different storage (cooling and freezing) and pre-treatment methods prior to anaerobic digestion using the biochemical methane potential (BMP) test. A. obliquus was selected to evaluate pre-treatment methods for further experimentation. Significantly higher CH4 yields of cooled (4 °C) A. obliquus biomass were achieved through ultrasonication (+53% CH4) and wet-milling (+51% CH4). These methods were then applied in follow-up experiments to cooled (4 °C) biomass of C. emersonii and A. obliquus. Ultrasonication again led to significantly higher CH4 yields for A. obliquus biomass (323 dm3 kg−1 CH4 yield calculated at standard gas conditions of 273 K, and 101.5 kPa per unit volatile solids, +41% CH4), and C. emersonii biomass (308 dm3 kg−1; +35% CH4). In a third experiment series, frozen A. obliquus and C. vulgaris biomass were thawed prior to pre-treatment and BMP-testing. Among all BMP tests, the highest CH4 yields were achieved with untreated, freeze-thawed C. vulgaris biomass (406 dm3 kg−1); pre-treatment did not enhance CH4 yields for C. vulgaris, but for A. obliquus (ultrasonication +20%). Pre-treatment was more effective for cooled than freeze-thawed microalgal biomass and combined effects acted strain dependently.  相似文献   

8.
Two-stage anaerobic digestion of heating pretreated waste sludge was conducted to evaluate the ability of biogas production and the changing of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS) and dissolved organic matters (DOM). The changes of volatile fatty acids (VFAs) and NH4+-N were analyzed. The duration of hydrogen production was 1 day and that of the methane production was 10 days. The highest hydrogen yield of 5.5 ml H2/g VSS and methane yield of 62.1 ml CH4/g VSS were obtained. The VSS removal of two-stage anaerobic digestion was 40%. Carbohydrate was the main substrate for hydrogen production and protein in DOM was the main sources for methane production. The structural and functional properties of organics in DOM were evaluated by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. Moreover, the humification index (HIX) and the fluorescence index (FI) were used to evaluate the humification and DOM source.  相似文献   

9.
To construct a system for the effective hydrogen production from food waste, the conditions of anaerobic digestion and biogas reforming have been investigated and optimized. The type of agitator and reactor shape affect the performance of anaerobic digestion reactors. Reactors with a cubical shape and hydrofoil agitator exhibit high performance due to the enhanced axial flow and turbulence as confirmed by simulation of computational fluid dynamics. The stability of an optimized anaerobic digestion reactor has been tested for 60 days. As a result, 84 L of biogas is produced from 1 kg of food waste. Reaction conditions, such as reaction temperature and steam/methane ratio, affect the biogas steam reforming reaction. The reactant conversions, product yields, and hydrogen production are influenced by reaction conditions. The optimized reaction conditions include a reaction temperature of 700 °C and H2O/CH4 ratio of 1.0. Under these conditions, hydrogen can be produced via steam reforming of biogas generated from a two-stage anaerobic digestion reactor for 25 h without significant deactivation and fluctuation.  相似文献   

10.
This study investigates enhancing the biogas production of sunnhemp by pretreatment, before the anaerobic digestion and co-digestion processes, to address the complex and recalcitrant structure of the plant. Fresh sunnhemp harvested at a cutting interval of 50 days is used in the study. Five systems (each with a 5 litre useable volume) are operated semi-continuously with five different ratios of the feedstock by feeding separate feedstocks every five days with a hydraulic retention time (HRT) of 40 days. The system operates at room temperature (30 °C). The study uses sunnhemp as 20% of the feedstock and also considers sunnhemp mixed with cow manure at different ratios, with the weighed sunnhemp being pretreated with dilute sodium hydroxide. Pretreatment of sunnhemp before digestion produces a methane (CH4) yield 89% greater than that of the untreated sunnhemp. It requires 3.597 kg of dry sunnhemp to produce 1 m3 of CH4 and the annual CH4 yield per hectare is 19,015 m3. In the pretreatment of sunnhemp before co-digestion, the increased CH4 yield depends on the amount of pretreated sunnhemp in the feedstocks. However, the %CH4, the CH4 production level and the system stability depend on the optimal ratio of the sunnhemp to cow manure. The initially prepared sunnhemp to cow manure ratio is recommended at 10 g:10 g in 80 mL of water. At this ratio, the %CH4 and the CH4 yield are 53.84% and 313 kg chemical oxygen demand (COD) removed, respectively, and the COD removal efficiency is 56.4%. Sunnhemp has high potential and it is worth pretreating before producing biogas. Using sunnhemp to produce biogas is recommended to decrease greenhouse gas emissions and mitigate global warming.  相似文献   

11.
There is a great need for decentralized anaerobic digestion (AD) that utilizes wastewater for energy generation. The biochemical methane potential (BMP) of Haitian latrine waste was determined and compared to other waste streams, such as grey water, septage, and dairy manure. Average methane (CH4) production for the latrine waste (13.6 ml ml−1 substrate) was 23 times greater than septage (0.58 ml ml−1 substrate), and 151 times greater than grey water (0.09 ml ml−1 substrate), illustrating the larger potential when waste is source separated using the decentralized sanitation and reuse (DESAR) concept for more appropriate treatment of each waste stream. Using the BMP results, methane production based on various AD configurations was calculated, and compared with the full-scale field AD design. Methane potential from the BMP testing was calculated as 0.006–0.017 m3 person−1 day−1 using the lowest and highest latrine BMP results, which was similar to the values from the full-scale system (0.011 m3 person−1 day−1), illustrating the ability of BMPs to be used to predict biogas production from sanitation digesters in a smaller-scale setting.  相似文献   

12.
The methane yield from the digestion of algae is typically much lower than the theoretical methane yield, and lower than yields reported for other organic substrates. This study presents a novel free nitrous acid (FNA) pre-treatment technique to improve methane production from algal biomass. The methane production yield through anaerobic digestion was found to be dramatically enhanced by FNA pre-treatment (2.31 mg HNO2–N L−1), with a 51% increase in the methane yield (from 161 to 250 L CH4 per kg VS added). A two substrate model was used to describe the apparent presence of rapid and slowly degradable material. Model-based analysis revealed that with FNA pre-treatment (2.31 mg HNO2–N L−1), the availability of both rapid and slowly biodegradable substrates were increased. Higher levels of nitrite (159 and 1006 mg N L−1) had an inhibitory/toxic effect. For this reason, coupled with the fact that denitrification of nitrite consumes organic substrate, it is concluded that pre-treatment liquor should be removed before digestion.  相似文献   

13.
The paper reports an experimental investigation into the transient performance during the start-up of a pilot-scale two-phase anaerobic digestion (TPAD) process demonstration unit (PDU) treating food waste with biochar addition. Hydrogen (H2) was produced in the first phase (R1) and methane (CH4) was produced in the second phase (R2). A fed-batch operation strategy was applied to the start-up of both phases, followed by semi-continuous operation. Production rates and yields of H2 and CH4 and volatile fatty acids (VFA) were measured while the pH and temperature were monitored throughout the process. Fed-batch operation allowed microbe enrichment and gradual VFA production in both phases, which was observed to be efficient in starting up the TPAD PDU. Under semi-continuous operation, R1 produced biogas with composition up to 49% of H2 and at a yield of 46 L H2.kg −1 VS. CH4 composition and yield reached up to 59% and 301 L CH4.kg−1 VS in the R2.  相似文献   

14.
This study investigates the co-digestion of poultry manure (PM) with sugar beet pulp residues (SBPR) obtained from saccharification and dewatering of sugar beet pulp. The laboratory-scale experiments were conducted under batch and semi-continuous conditions at mesophilic temperatures (35 °C). Batch tests gave specific biogas and methane yields of 590 dm3/kgVSfed and 423 dm3CH4/kgVSfed, respectively for SBPR, whereas the corresponding values for PM were 434 dm3/kgVSfed and 300 dm3CH4/kgVSfed. The co-digestion of PM with SBPR was found to increase biogas and methane yields compared to the manure alone. In semi-continuous reactor experiments, the highest methane yield of 346 dm3 CH4/kgVSfed was achieved for the mixture containing poultry manure with 50% SBPR (weight basis) and a solids retention time (SRT) of 20 days. However, when poultry manure was digested as a sole feedstock, the biogas production was inhibited by ammonia, whereas the co-digestion of PM with 25% SBPR was slightly affected by volatile fatty acids, which concentrations exceeded 4000 g/m3.  相似文献   

15.
Nymphoides peltatum (NP) is exploited as a novel feedstock for biomethane production via anaerobic co-digestion with waste sludge (WS). Batch experiments are conducted under mesophilic condition at NP/WS of 1/3, 2/2, 3/1, 0/4 and 4/0 based on volatile solids (VS). Prior to anaerobic digestion (AD), NP undergoes only natural drying and grinding. The maximum net cumulative methane yield (265.16 mL CH4·g VSadded?1) and the highest gross VS removal rate (56.12%) are obtained at NP/WS of 1/3. The kinetic analysis by the modified Gompertz model fit hinted that 28 days is adequate for methane recovery and co-digestion significantly accelerates the digestion rate. Synergetic effect is corroborated to exist in co-digestion due to amiable conditions in term of total ammonia nitrogen, free ammonia, pH, volatile fatty acids and total alkalinity. High-throughput 16S rRNA pyrosequencing reveals that Bacteroidetes, Firmicutes, Methanosarcina and Methanosaeta are conducive to AD of NP.  相似文献   

16.
The methane potential of six varieties of fresh maize (whole plant) harvested at three different times and of maize silage (whole plant) in two particle size distributions was experimentally determined in batch assays. Fresh maize gave the highest methane yield/hectare at late harvest (6270 m3 CH4 (104 m2)−1). The methane yield/wet weight (WW) increased from 80 (early harvest) to 137 m3 CH4 (t WW)−1 (late harvest). Maize harvested at different times, or different varieties of maize had similar specific methane production/volatile solids content (m3 CH4 (kg VS)−1). The measured yield m3 CH4 (kg VS)−1 was 84% of the theoretical methane potential. The estimated ethanol yield was between 2.5 and 3.5 t ethanol (104 m2)−1. The energy yield was 62 and 19–22 MWh (104 m2)−1 if fresh maize (whole plant) is used for methane or ethanol production respectively. Reducing the particle size of maize silage to an average size of approximately 2 mm increased the methane yield m3 CH4 (kg VS)−1 by approximately 10%.  相似文献   

17.
The potential of semi-continuous mesophilic anaerobic digestion (AD) for the treatment of solid slaughterhouse waste, fruit-vegetable wastes, and manure in a co-digestion process has been experimentally evaluated. A study was made at laboratory scale using four 2 L reactors working semi-continuously at 35 °C. The effect of the organic loading rate (OLR) was initially examined (using equal proportion of the three components on a volatile solids, VS, basis). Anaerobic co-digestion with OLRs in the range 0.3–1.3 kg VS m−3 d−1 resulted in methane yields of 0.3 m3 kg−1 VS added, with a methane content in the biogas of 54–56%. However, at a further increased loading, the biogas production decreased and there was a reduction in the methane yield indicating organic overload or insufficient buffering capacity in the digester.In the second part of the investigation, co-digestion was studied in a mixture experiment using 10 different feed compositions. The digestion of mixed substrates was in all cases better than that of the pure substrates, with the exception of the mixture of equal amounts of (VS/VS) solid cattle–swine slaughterhouse waste (SCSSW) with fruit and vegetable waste (FVW). For all other mixtures, the steady-state biogas production for the mixture was in the range 1.1–1.6 L d−1, with a methane content of 50–57% after 60 days of operation. The methane yields were in the range 0.27–0.35 m3 kg−1 VS added and VS reductions of more than 50% and up to 67% were obtained.  相似文献   

18.
The objective of this study was to characterise anaerobic batch biodegradation of potato waste alone and when co-digested with sugar beet leaves. The effects of increasing concentration of potato waste expressed as percentage of total solids (TS) and the initial inoculum-to-substrate ratio (ISR) on methane yield and productivity were investigated. The ISRs studied were in the range 9.0–0.25 and increasing proportions of potato waste from 10% to 80% of TS. A maximum methane yield of 0.32 l CH4/g VSdegraded was obtained at 40% of TS and an ISR of 1.5. A methane content of up to 84% was obtained at this proportion of potato waste and ISR. Higher ISRs led to faster onset of biogas production and higher methane productivity. Furthermore, co-digestion of potato waste and sugar beet leaves in varying proportions was investigated at constant TS. Co-digestion improved the accumulated methane production and improved the methane yield by 31–62% compared with digestion of potato waste alone.  相似文献   

19.
The feasibility of operational strategies was investigated for hydrogen and methane production from food waste. Food waste was heat-treated at 70 °C and fed to a two-phase anaerobic sequencing batch fermenting system. Maximum hydrogen productivity of 1.19 m3 H2/m3 d was observed at a food waste concentration of 30 g carbohydrate/L, a hydraulic retention time of 2 d, and a solids retention time of 3.4 d. The effluent from hydrogenesis was efficiently converted to methane at an organic loading rate of up to 3.6 kg COD/m3.d. The methanogenic effluent was then recycled to the hydrogenesis reactor without any pretreatment. The recycled effluent not only successfully replaced external dilution water and decreased alkaline dosage by 75%, but also increased hydrogen production by 48%, resulting in hydrogen productivity of 1.76 m3/m3 d. The two-phase digestion with recycling would convert 91% of organic pollutants in food waste to hydrogen (8%) and methane (83%) without any external dilution water.  相似文献   

20.
Extremadura is a Spanish south western region located by the Portuguese border. For decades, tobacco has been traditionally cultivated in Cáceres, the north province of such region. As a result, farmers in the area have extensive experience with this crop, and a fresh tobacco annual production is therefore guaranteed. This way, tobacco plant appears as an excellent candidate as energy crop.The present work reports on the economic viability of the anaerobic digestion of tobacco plant under the two following scenarios: 1) biogas generated in the biological process to be used as fuel to produce heat, thus avoiding the consumption of any other fossil fuel; 2) electric and thermal power generated by the anaerobic digestion plant to be self-consumed or sold to nearby industries.The mesophilic anaerobic digestion experiments carried out in semicontinuous mode yielded the highest methane production (53.84 ± 15.48 Nm3CH4/t fresh tobacco) for substrate composition 15% fresh tobacco/85% water and 16 days degradation period.However, such methane yield by anaerobic digestion was seen not to meet economic feasibility requirements. Instead, methane production rates should be increased up to 90 and 110 Nm3 methane/t fresh tobacco (1500 €/ha production costs) in order to achieve 8.91 and 9.08 years for investment return according to scenarios 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号