首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least three different definitions of fuel processor efficiency are in widespread use in the fuel cell industry. In some instances the different definitions are qualitatively the same and differ only in their quantitative values. However, in certain limiting cases, the different efficiency definitions exhibit qualitatively different trends as system parameters are varied. In one limiting case that will be presented, the use of the wrong efficiency definition can lead a process engineer to believe that a theoretical maximum in fuel processor efficiency exists at a particular operating condition, when in fact no such efficiency optimum exists. For these reasons, the objectives of this paper are to: (1) quantitatively compare and contrast these different definitions, (2) highlight the advantages and disadvantages of each definition and (3) recommend the correct definition of fuel processor efficiency.  相似文献   

2.
After comparing fresh and degraded performances of Polymer Electrolyte Membrane (PEM) based components of a hydrogen cycle with the help of computational fluid dynamics simulations, recently established stand-alone solar energy system producing hydrogen for energy storage is investigated focusing on the effects of degradation of fuel cells on the overall performance of the system. A complete model of the system has been developed using TRNSYS, and a degraded PEM Fuel Cell Subsystem has been incorporated into the model. Then, the effects of the PEM fuel cell degradation on the overall performance of the energy system are estimated. After reviewing the simulation results, the model shows that the PEM Fuel Cell degradation has a substantial impact on the overall system performance causing a system down time of approximately one month in a typical simulation year. Consequently, the stand-alone system is not capable of operating continuously for a complete year when the PEM fuel cells are degraded. Furthermore, an economic analysis is performed for a project lifetime of 25 years and the Levelized Cost of Electricity (LCE) value of the degraded system is found to be 0.08 $/kWh higher than the newly established system. Nevertheless, LCE calculations that are repeated for declining PV panel costs show that the considered hybrid system may be an economically competitive alternative to conventional diesel generators, even when the degradation of PEM based components and their regular maintenance are considered.  相似文献   

3.
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.  相似文献   

4.
The hydrogen feeding sub-system is one of balance of plant (BOP) components necessary for the correct operation of a fuel cell system (FCS). In this paper the performance of a 6 kW PEM (Proton Exchange Membrane) FCS, able to work with two fuel feeding procedures (dead-end or flow-through), was experimentally evaluated with the aim to highlight the effect of the anode operation mode on stack efficiency and durability. The FCS operated at low reactant pressure (<50 kPa) and temperature (<330 K), without external humidification. The experiments were performed in both steady state and dynamic conditions. The performance of some cells in dead-end mode worsened during transient phases, while a more stable working was observed with fuel recirculation. This behavior evidenced the positive role of the flow-through procedure in controlling flooding phenomena, with the additional advantage to simplify the management issues related to hydrogen purge and air stoichiometric ratio. The flow-through modality resulted a useful way to optimize the stack efficiency and to reduce the risks of fast degradation due to reactant starvation during transient operative phases.  相似文献   

5.
A new algorithm is presented to integrate component balances along polymer electrolyte membrane fuel cell (PEMFC) channels to obtain three-dimensional results from a detailed two-dimensional finite element model. The analysis studies the cell performance at various hydrogen flow rates, air flow rates and humidification levels. This analysis shows that hydrogen and air flow rates and their relative humidity are critical to current density, membrane dry-out, and electrode flooding. Uniform current densities along the channels are known to be critical for thermal management and fuel cell life. This approach, of integrating a detailed two-dimensional across-the-channel model, is a promising method for fuel cell design due to its low computational cost compared to three-dimensional computational fluid dynamics models, its applicability to a wide range of fuel cell designs, and its ease of extending to fuel cell stack models.  相似文献   

6.
Computational model of a PEM fuel cell with serpentine gas flow channels   总被引:10,自引:0,他引:10  
A three-dimensional computational fluid dynamics model of a PEM fuel cell with serpentine flow field channels is presented in this paper. This comprehensive model accounts for the major transport phenomena in a PEM fuel cell: convective and diffusive heat and mass transfer, electrode kinetics, and potential fields. A unique feature of the model is the implementation of a voltage-to-current (VTC) algorithm that solves for the potential fields and allows for the computation of the local activation overpotential. The coupling of the local activation overpotential distribution and reactant concentration makes it possible to predict the local current density distribution more accurately. The simulation results reveal current distribution patterns that are significantly different from those obtained in studies assuming constant surface overpotential. Whereas the predicted distributions at high load show current density maxima under the gas channel area, low load simulations exhibit local current maxima under the collector plate land areas.  相似文献   

7.
In order to eliminate the local CO2 emissions from vehicles and to combat the associated climate change, the classic internal combustion engine can be replaced by an electric motor. The two most advantageous variants for the necessary electrical energy storage in the vehicle are currently the purely electrochemical storage in batteries and the chemical storage in hydrogen with subsequent conversion into electrical energy by means of a fuel cell stack. The two variants can also be combined in a battery electric vehicle with a fuel cell range extender, so that the vehicle can be refuelled either purely electrically or using hydrogen. The air compressor, a key component of a PEM fuel cell system, can be operated at different air excess and pressure ratios, which influence the stack as well as the system efficiency. To asses the steady state behaviour of a PEM fuel cell range extender system, a system test bench utilising a commercially available 30 kW stack (96 cells, 409 cm2 cell area) was developed. The influences of the operating parameters (air excess ratio 1.3 to 1.7, stack temperature 20 °C–60 °C, air compressor pressure ratio up to 1.67, load point 122 mA/cm2 to 978 mA/cm2) on the fuel cell stack voltage level (constant ambient relative humidity of 45%) and the corresponding system efficiency were measured by utilising current, voltage, mass flow, temperature and pressure sensors. A fuel cell stack model was presented, which correlates closely with the experimental data (0.861% relative error). The air supply components were modelled utilising a surface fit. Subsequently, the system efficiency of the validated model was optimised by varying the air mass flow and air pressure. It is shown that higher air pressures and lower air excess ratios increase the system efficiency at high loads. The maximum achieved system efficiency is 55.21% at the lowest continuous load point and 43.74% at the highest continuous load point. Future work can utilise the test bench or the validated model for component design studies to further improve the system efficiency.  相似文献   

8.
The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200™ fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency.  相似文献   

9.
Solar steam power plant is the dominant technology in the category of solar thermal power systems. In steam power cycles, there is usually a couple of steam lines, extracted from medium-pressure and low-pressure turbines, to preheat the working fluid before the boiler. This although leads to an increase in the energy efficiency of the cycle, reduces the contribution of the turbine proportionally. Therefore, finding an alternative method of preheating the working fluid would be effective in further enhancement of the efficiency of the system. In this study, the feasibility of using solar collectors for the preheating process in a solar steam power plant is investigated. For this, parabolic trough solar collectors and evacuated tube solar collectors based on a wide range of different scenarios and configurations are employed. The plant is designed, sized and thermodynamically analyzed for a case study in Saudi Arabia where there is a large solar irradiation potential over the year. The results of the simulations show that, among all the considered scenarios, a power cycle aided by a set of parabolic trough collectors as the preheating unit is the best choice technically. This configuration leads to about 23% increased power generation rate and 6.5% efficiency enhancement compared to the conventional design of the plant.  相似文献   

10.
水对质子交换膜(PEM)燃料电池的性能有极其重要的影响,良好的水管理是PEM燃料电池保持高性能的必要条件.通过试验,观察了在重力作用下液态水对PEM燃料电池性能及其内部传质的影响,分析了PEM燃料电池单体电极的不同摆放位置对其性能的影响.试验结果发现:在电流密度较小时,重力对PEM燃料电池性能的影响不明显,电流密度较大时,重力对PEM燃料电池性能的影响比较明显.试验结果对优化PEM燃料电池的结构和水管理有一定的参考价值.  相似文献   

11.
The water management is critical for the operation of PEM fuel cells and has a strong impact on its performance and durability. The aim of this work is the simulation-based investigation of the operation of a PEM fuel cell system with the special focus on its water management.In order to analyze these dependencies correctly, a 2-D + 1-D PEM fuel cell stack model has been developed, which on the one hand has a high level of modelling details and on the other hand meets high requirements concerning its runtime, to enable acceptable simulation times for fuel cell system simulations. The fuel cell model is integrated into an AVL Cruise-M fuel cell system simulation.An analysis is presented comparing a system operation with a fuel cell in co- and counter-flow configuration with a special focus on the local and overall water management.  相似文献   

12.
A methanol-air fuel cell battery for light tractionary purposes has been built. The cell stack features platinum on carbon methanol electrodes, hydrophobic air electrodes and a new stack building technique based on metal O-rings.  相似文献   

13.
针对高工作电流密度下,燃料电池内局部水淹导致的传质损失问题,本研究提出了一种阴极流道多进口分流进气方式。实验研究了三种典型分流口位置及分流进量对电池性能的影响。研究发现随着分流口远离阴极主进气口,电池性能呈现先上升后下降的趋势,且当分流口靠近主进气口时,增加分流量有助于电池性能提升,但分流量的增加对电池性能的提升存在一个极限值;因此,在对电池进行分流进气优化时需综合考虑分流口位置和分流量的影响。当分流口为SIP-30%且分流量为按化学当量比ξc = 0.75取值时,分流进气方式相比传统进气方式,电池的最大功率密度高出17.8%。  相似文献   

14.
The proton exchange membrane fuel cell (PEMFC) is promising technology for efficient power generation and has wide applications. In PEMFC development, it is important to diagnose malfunctions in a system with defective components and a PEMFC stack can act as an effective sensor to detect the various malfunctioning modes. Hence, the focus of this study is to analyze the response of a PEMFC under various malfunction conditions including humidifier, air blower, and coolant pump, catalyst layer degradation, and membrane aging based on 3D PEMFC simulations. Except for the coolant supply malfunction, other malfunctions exhibit similar behavior in terms of voltage drop and temperature rise, requiring more detailed measurement techniques such as Electrochemical Impedance Spectroscopy to identify the cause of malfunctions. In addition, measuring the relative humidity of the outlet gas may not provide sufficient information to distinguish the malfunction of the anode or cathode humidifier. The results of the study suggest fault detection and isolation methods under these malfunction conditions to prevent more severe failure of the PEMFC stack and system. An extensive multi-dimensional contour comprising temperature, relative humidity, liquid saturation, water content, and current density is also provided for the better analyzation of system malfunctioning behaviors.  相似文献   

15.
A full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena in a PEM fuel cell: convective and diffusive heat and mass transfer, electrode kinetics, and potential fields. In addition to the tubular-shaped geometry, the model feature an algorithm that allows for more realistic representation of the local activation overpotentials which leads to improved prediction of the local current density distribution. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented. The model is shown to be able to understand the many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.  相似文献   

16.
Open Pore Cellular Foam (OPCF) has received increased attention for use in Proton Exchange Membrane (PEM) fuel cells as a flow plate due to some advantages offered by the material, including better gas flow, lower pressure drop and low electrical resistance.In the present study, a novel design for an air-breathing PEM (ABPEM) fuel cell, which allows air convection from the surrounding atmosphere, using OPCF as a flow distributor has been developed. The developed fuel cell has been compared with one that uses a normal serpentine flow plate, demonstrating better performance.A comparative analysis of the performance of an ABPEM and pressurised air PEM (PAPEM) fuel cell is conducted and poor water management behaviour was observed for the ABPEM design.Thereafter, a PTFE coating has been applied to the OPCF with contact angle and electrochemical polarisation tests conducted to assess the capability of the coating to enhance the hydrophobicity and corrosion protection of metallic OPCF in the PEM fuel cell environment. The results showed that the ABPEM fuel cell with PTFE coated OPCF had a better performance than that with uncoated OPCF.Finally, OPCF was employed to build an ABPEM fuel cell stack where the performance, advantages and limitations of this stack are discussed in this paper.  相似文献   

17.
An experimental study is carried out to investigate effects of stack orientation and vibration on the performance of Proton Exchange Membrane (PEM) fuel cell. A 25‐cm2 single cell with serpentine anode and straight cathode flow channels is used. The hydrogen flow rate, cathode air temperature, and relative humidity are kept constant at 60 smL/min, 20 °C and 80%, respectively, whereas the cathode air flow rate values are 220, 440, and 660 smL/min as well as free breathing case. An orientation and vibration mechanisms are designed to facilitate different values orientation positions and vibration amplitude and frequency of the stack. The results show that stack orientation and vibration have significant effects on the performance of PEM fuel cell. Based on the results obtained from this study, it can be concluded that optimum positions of cell orientation are 30° and 90° at low and high values of cathode air flow rate, respectively. Also, an improvement in the performance of the fuel cell is achieved when the stack is vibrated with low values of amplitude and frequency. Each of cell maximum power density and maximum hydrogen utilization decreases with increasing each of amplitude and frequency of stack vibration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reviewed over 150 articles on the subject of the effect of contamination on PEM fuel cell. The contaminants included were fuel impurities (CO, CO2, H2S, and NH3); air pollutants (NOx, SOx, CO, and CO2); and cationic ions Fe3+ and Cu2+ resulting from the corrosion of fuel cell stack system components. It was found that even trace amounts of impurities present in either fuel or air streams or fuel cell system components could severely poison the anode, membrane, and cathode, particularly at low-temperature operation, which resulted in dramatic performance drop. Significant progress has been made in identifying fuel cell contamination sources and understanding the effect of contaminants on performance through experimental, theoretical/modeling, and methodological approaches. Contamination affects three major elements of fuel cell performance: electrode kinetics, conductivity, and mass transfer.  相似文献   

19.
Further improvement in the performance of the polymer electrolyte membrane fuel cells as a power source for automotive applications may be achieved by the use of a new material in the manufacture of the bipolar plate. Several nickel alloys were applied on the aluminum substrate, the use of aluminum as a bipolar plate instead of graphite is to reduce the bipolar plate cost and weight and the ease of machining. The electroplated nickel alloys on aluminum substrate produced a new metallic bipolar plate for PEM fuel cell with a higher efficiency and longer lifetime than the graphite bipolar plate due to its higher electrical conductivity and its lower corrosion rate. Different pretreatment methods were tested; the optimum method for pretreatment consists of dipping the specimen in a 12.5% NaOH for 3 min followed by electroless zinc plating for 2 min, then the specimen is dipped quickly in the electroplating bath after rinsing with distilled water. The produced electroplate was tested with different measurement techniques, chosen based on the requirement for a PEM fuel cell bipolar plate, including X-ray diffraction, EDAX, SEM, corrosion resistance, thickness measurement, microhardness, and electrical conductivity.  相似文献   

20.
The cold-start behavior and the effect of sub-zero temperatures on fuel cell performance were studied using a 25-cm2 proton exchange membrane fuel cell (PEMFC). The fuel cell system was housed in an environmental chamber that allowed the system to be subjected to temperatures ranging from sub-freezing to those encountered during normal operation. Fuel cell cold-start was investigated under a wide range of operating conditions. The cold-start measurements showed that the cell was capable of starting operation at −5 °C without irreversible performance loss when the cell was initially dry. The fuel cell was also able to operate at low environmental temperatures, down to −15 °C. However, irreversible performance losses were found if the cell cathode temperature fell below −5 °C during operation. Freezing of the water generated by fuel cell operation damaged fuel cell internal components. Several low temperature failure cases were investigated in PEM fuel cells that underwent sub-zero start and operation from −20 °C. Cell components were removed from the fuel cells and analyzed with scanning electron microscopy (SEM). Significant damage to the membrane electrode assembly (MEA) and backing layer was observed in these components after operation below −5 °C. Catalyst layer delamination from both the membrane and the gas diffusion layer (GDL) was observed, as were cracks in the membrane, leading to hydrogen crossover. The membrane surface became rough and cracked and pinhole formation was observed in the membrane after operation at sub-zero temperatures. Some minor damage was observed to the backing layer coating Teflon and binder structure due to ice formation during operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号