首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to slow down the continuing environmental deterioration, regulations for pollutant emissions limitations are increasingly rigorous. The development of new alternative fuels for internal combustion engines is a very interesting solution not only to overcome the pollution problem but also because of the petroleum shortage. In this context, the present work investigates the improvement of a DI diesel engine operating at constant speed (1500 rpm) and under dual fuel mode with eucalyptus biodiesel and natural gas (NG) enriched by various H2 quantities (15, 25 and 30 by v%). The eucalyptus biodiesel quantity injected into the engine cylinder is kept constant, to supply around 10% of the engine nominal power, for all examined engine loads. The engine load is further increased using only the gaseous fuel (NG+H2), which is introduced with the intake air. The effect of H2/NG blending ratio on the combustion parameters, performance and pollutant emissions of the engine is investigated and compared with those of pure NG case. An important benefit in terms of brake specific fuel consumption, reaching a decrease of 4–10% with the 25% H2 blend compared to the pure NG case, is achieved. Concerning the pollutant emissions, NG enrichment with H2 is an efficient solution to enhance the combustion process and hence reduce carbon monoxide, unburned hydrocarbon and soot emissions at high loads where they are important for pure NG. However for the nitrogen oxide emissions, NG blending with H2 is attractive only at low and medium loads where their levels are lower than pure NG.  相似文献   

2.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

3.
In this study, an experimental investigation was performed to reveal combustion and emission characteristics of common-rail four-cylinder diesel engine run with CH4, CO2 and H2 mixtures. The engine pistons were thermally coated with zirconia and Ni–Al bond coat by plasma spray method. With a small amount of the pilot diesel, port fuelled methane (100% CH4), synthetic biogas (80% CH4 + 20% CO2), and hydrogen presented (80% CH4+10% CO2+10% H2) mixtures were used as main fuel at different loads (50 Nm, 75 Nm, and 100 Nm) at a constant speed of 1750 min?1. Comparative analysis of the combustion (cylinder pressure, PRR, HRR, CHR, ringing intensity, CA10, CA50, and CA90), BSFC, and emissions (CO2, HC, NOx, smoke, and oxygen) at the various engine loads with and without piston coating was made for all fuel combinations. It was found that coating the engine pistons enhanced the examining combustion characteristics, whereas it slightly changed BSFC and most of the emissions. As compared to the sole diesel fuel, the gaseous fuel operations showed higher in-cylinder pressure, PRR, and ringing intensity values, earlier combustion starting and CAs, and lower diesel injection pressure at the same engine operating conditions. Dramatic increase in the ringing intensity was particularly found by the hydrogen introduced mixture under the tests with coated piston. HC and CO2 emissions increased in operation with the synthetic biogas; however, hydrogen introduction reduced HC emissions by 4.97–30.92%, and CO2 emissions by 5.16–10%.  相似文献   

4.
Biogas can be used as a less expensive continuance renewable fuel in internal combustion engines. However, variety in raw materials and process of biogas production results in different components and percentages of various elements, including methane. These differences make it difficult to control the combustion, effectively, in internal combustion engines. In this research, under cleaning and reforming process, biogas components were fixed. Then the effect of reformed biogas (R.BG) was investigated, numerically, on the combustion behavior, performance and emissions characteristics of a RCCI engine. A 3D-computational modeling has been performed to validate a single-cylinder compression ignition engine in conventional diesel and dual-fuel operations at 9 bar IMEP, 1300 rpm. Then, the combustion model of the RCCI engine was simulated by replacing diesel fuel with 20%, 40% and 60% of R.BG as a low reactivity fuel while remaining constant input total fuel energy per cycle. The results demonstrated that when the R.BG substitution ratio increases with a constant equivalence ratio of 0.43, the mean combustion temperature decreases to 1354 K, 1312 K, 1292 K which are about 3.5%, 6.6%, 7.9% lower than the conventional diesel combustion, respectively. The maximum in-cylinder pressure increases up to 22.63%. Instead, it results in 2.3%, 7.9%, and 14.5% engine power output losses, respectively. Also, the NOx emission, against CO, is decreased by 50%. Soot and UHC emissions were found to be slightly decreased while was used R.BG more than 40%.  相似文献   

5.
The paper presents results of experimental research on a dual-fuel engine powered by diesel fuel and natural gas enriched with hydrogen. The authors attempted to replace CNG with hydrogen fuel as much as possible with a constant dose of diesel fuel of 10% of energy fraction. The tests were carried out for constant engine load of IMEP = 0.7 MPa and a rotational speed of n = 1500 rpm. The effect of hydrogen on combustion, heat release, combustion stability and exhaust emissions was analyzed. In the test engine, the limit of hydrogen energy fraction was 19%. The increase in the fraction caused an increase in the cycle-by-cycle variation and the occurrence of engine knocking. It was shown that the enrichment of CNG with hydrogen allows for the improvement in the combustion process compared to the co-combustion of diesel fuel with non-enriched CNG, where the reduction in the duration of combustion by 30% and shortening the time of achieving 50% of MFB by 50% were obtained. The evaluation of the spread of the end of combustion is also presented. For H2 energetic share over 20%, the spread of end of combustion was 48° of crank angle. Measurement of exhaust emissions during the tests revealed an increase in THC and NOx emissions.  相似文献   

6.
This work aims to replace conventional diesel fuel with low and no carbon fuels like ethanol and hydrogen to reduce the harmful emission that causes environmental degradation. Pursuant to this objective, this study investigated the performance, combustion, and emission characteristics of the diesel engine operated on dual fuel mode by ethanol-diesel blends with H2 enriched intake air at different engine loads with a constant engine speed of 1500 rpm. The results were compared to sole diesel operation with and without H2 enrichment. The ethanol/diesel was blended in v/v ratios of 5, 10, and 15% and tested in a diesel engine along with a 9 lpm H2 flow rate at the intake manifold. The results revealed that 10% ethanol with 9 lpm H2 combination gives the maximum brake thermal efficiency, which is 1% and 4.8% higher than diesel with and without H2 enrichment, respectively. The brake specific fuel consumption of the diesel-ethanol blends with H2 flow increased with increasing ethanol ratio in the blend. When the ethanol ratio increased from 5 to 10%, in-cylinder pressure and heat release rate were increased, whereas HC, CO, and NOx emissions were decreased. At maximum load, the CO and HC emission of 10% ethanol blend with 9 lpm H2 case decreased by about 50% and 28.7% compared to sole diesel. However, NOx emission of the same blend was 11.4% higher than diesel. From the results, the study concludes that 10% ethanol blended diesel with a 9 lpm H2 flow rate at the intake port is the best dual-fuel mode combination that gives the best engine characteristics with maximum diesel replacement.  相似文献   

7.
Hydrogen (H2) emissions characteristics of H2-diesel dual fuel engine were measured using a 2004 turbocharged heavy-duty diesel engine with H2 supplemented into the intake air. The emissions of H2 were measured using an Electron Pulse Ionization (EPI) Mass Spectrometer (MS). The effect of the amount of H2 added, the engine load, and diesel fuel flow rates on the emissions of H2 and its combustion efficiency in the engine were investigated.  相似文献   

8.
The co-combustion of diesel fuel with H2 presents a promising route to reduce the adverse effects of diesel engine exhaust pollutants on the environment and human health. This paper presents the results of H2-diesel co-combustion experiments carried out on two different research facilities, a light duty and a heavy duty diesel engine. For both engines, H2 was supplied to the engine intake manifold and aspirated with the intake air. H2 concentrations of up to 20% vol/vol and 8% vol/vol were tested in the light duty and heavy duty engines respectively. Exhaust gas circulation (EGR) was also utilised for some of the tests to control exhaust NOx emissions.The results showed NOx emissions increase with increasing H2 in the case of the light duty engine, however, in contrast, for the heavy duty engine NOx emissions were stable/reduced slightly with H2, attributable to lower in-cylinder gas temperatures during diffusion-controlled combustion. CO and particulate emissions were observed to reduce as the intake H2 was increased. For the light duty, H2 was observed to auto-ignite intermittently before diesel fuel injection had started, when the intake H2 concentration was 20% vol/vol. A similar effect was observed in the heavy duty engine at just over 8% H2 concentration.  相似文献   

9.
The proven feasibility of ammonia combustion in compression-ignition engines has led to it being considered as a carbon-free replacement for diesel fuel. Due to its high auto-ignition temperature, however, a more realistic strategy would be to aim for a step-change reduction in carbon emissions by co-fuelling a diesel engine with ammonia. In assessing this strategy, ammonia gas was introduced into the air-intake manifold of a compression-ignition engine, while diesel fuel was injected directly into the cylinder to ignite the mixture. By substituting only 3% of the air intake by ammonia, the diesel consumption and the CO2 emissions decreased by 15%. The combustion and emission characteristics were then compared when the same percentage of air intake (by mass) was substituted by either dissociated ammonia (a mixture of H2, N2 with small percentages of NH3) or pure hydrogen, to mimic the other possible forms in which the co-fuel can be delivered to the engine. The addition of pure hydrogen resulted in the best engine performance, both in terms of combustion efficiency and regulated emission quality. The thermal combustion efficiency declined by only ∼0.5% when the H2 was replaced by undissociated ammonia at low load, but N2O now appeared in the emissions. Co-fuelling the engine with dissociated ammonia may provide the ideal compromise in terms of thermal combustion efficiency and emission quality, while also providing a waste-heat recovery mechanism.  相似文献   

10.
Fuel injection pressure and injection timing are two extensive injection parameters that affect engine performance, combustion, and emissions. This study aims to improve the performance, combustion, and emissions characteristics of a diesel engine by using karanja biodiesel with a flow rate of 10 L per minute (lpm) of enriched hydrogen. In addition, the research mainly focused on the use of biodiesel with hydrogen as an alternative to diesel fuel, which is in rapidly declining demand. The experiments were carried out at a constant speed of 1500 rpm on a single-cylinder, four-stroke, direct injection diesel engine. The experiments are carried out with variable fuel injection pressure of 220, 240, and 260 bar, and injection timings of 21, 23, and 25 °CA before top dead center (bTDC). Results show that karanja biodiesel with enriched hydrogen (KB20H10) increases BTE by 4% than diesel fuel at 240 bar injection pressure and 23° CA bTDC injection timing. For blend KB20H10, the emissions of UHC, CO, and smoke opacity are 33%, 16%, and 28.7% lower than for diesel. On the other hand NOx emissions, rises by 10.3%. The optimal injection parameters for blend KB20H10 were found to be 240 bar injection pressure and 23 °CA bTDC injection timing based on the significant improvement in performance, combustion, and reduction in exhaust emissions.  相似文献   

11.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

12.
Biogas has been a promising alternative fuel for IC engines. However, its CO2 content reduces calorific value and ignitability. The CO2 fraction of raw biogas can be separated out by various techniques, which are collectively called methane enrichment. The present study explores the effect of methane enrichment on the output parameters of a Homogeneous Charge Compression Ignition (HCCI) engine. A single cylinder CI engine is altered for this purpose. Biogas (CH4 + CO2) is supplied along with air. Diethyl Ether (DEE) is used as the secondary fuel to initiate auto-ignition. The effects of injecting DEE at the inlet port and upstream in the intake manifold are also compared. Performance, emission and combustion characteristics such as brake thermal efficiency, equivalence ratio, HC, CO, CO2, NOx and smoke emissions, start and duration of combustion, in-cylinder pressure and maximum heat release rate are compared for operation with raw biogas (50% methane) and methane enriched biogas (100% methane) for various biogas flow rates and engine torques. Results show that methane enrichment enhances brake thermal efficiency by up to 2% compared to raw biogas. Methane enrichment advances and speeds up combustion. HC, CO and CO2 emissions, maximum cylinder pressure and maximum heat release rate are also improved with methane enrichment. Ultra-low NOx and smoke emissions can be obtained using raw biogas as well as methane enriched biogas. Low biogas flow rates provide better brake thermal efficiency and HC emissions. Manifold injection of DEE enhances brake thermal efficiency by up to 2% compared to port injection by virtue of greater mixture homogeneity.  相似文献   

13.
The effect of the addition of hydrogen (H2) on the combustion process and nitric oxide (NO) formation in a H2-diesel dual fuel engine was numerically investigated. The model developed using AVL FIRE as a platform was validated against the cylinder pressure and heat release rate measured with the addition of up to 6% (vol.) H2 into the intake mixture of a heavy-duty diesel engine with exhaust gas recirculation (EGR). The validated model was applied to further explore the effect of the addition of 6%–18% (vol.) H2 on the combustion process and formation of NO in H2-diesel dual fuel engines. When the engine was at N = 1200 rpm and 70% load, the simulation results showed that the addition of H2 prolonged ignition delay, enhanced premixed combustion, and promoted diffusion combustion of the diesel fuel. The maximum peak cylinder pressure was observed with addition of 12% (vol.) H2. In comparison, the maximum peak heat release rate was observed with the addition of 16% (vol.) H2. The addition of H2 was a crucial factor dominating the increased NO emissions. Meanwhile, the addition of H2 reduced soot emissions substantially, which may be due to the reduced diesel fuel burned each cycle. Furthermore, proper combination of adding H2 with EGR can improve combustion performance and reduce NO emissions.  相似文献   

14.
ABSTRACT

For fetching day-to-day energy needs, current energy requirement majorly depends on fossil fuels. But ambiguous matter like abating petroleum products and expanding air pollution has enforced the experts to strive for another fuel which can be used as an alternative or reduce the applications of fossil fuels. Considering the issues, the main objective of the present study is to find the feasibility by using blends of rice bran oil biodiesel and diesel which are used as pilot fuels by blending 10% and 20% biodiesel in fossil diesel and biogas, introduced as gaseous fuel by varying its mass flow rate in a dual-fuel engine mode. An experimentation study was carried out to find the performance and emission parameters of the engine relative to pure diesel. The results were very much similar to the majority of researchers who used biodiesel and gaseous fuels in a dual-fuel engine. Brake specific fuel consumption (BSFC) of the engine was noticed to have increased, while brake thermal efficiency was on the lower side in dual fuel mode in comparison with regular diesel. In relation with conventional diesel, it was noticed that combined effect of rice bran methyl esters and varying mass flow rate of biogas showed a decrement in NO x and smoke emissions, whereas HC and CO exhalations were on higher side when biogas and biodiesel were utilized collectively in dual-fuel engine. Hence, it was concluded that combination of blends of biodiesel and diesel and introduction of biogas in the engine can be a promising combination which can be used as a substitute fuel for addressing future energy needs.  相似文献   

15.
In this work, an experimental investigation has been carried out to reduce the emission and improve the performance and combustion characteristics of direct injection compression ignition (DICI) engine fuelled with diesel and biogas in dual fuel mode. The anaerobic digestion method was used to produce biogas from tamarind seed and rice bran (TSRB). The diesel is injected by conventional injector setup and the biogas is inducted through the intake manifold with air in different flow rates such as 0.25, 0.50, 0.75, and 1.0 kg/hr. The emission, combustion, and performance test is conducted with a different flow rate of biogas with diesel and compared with diesel. Results show that the smoke and Nox emissions are lowered by 7.1and 23.27%, respectively compared to diesel mode.  相似文献   

16.
This study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1–32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations.  相似文献   

17.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

18.
This paper investigated the nitrogen dioxide (NO2) emissions of a heavy-duty diesel engine operated in hydrogen (H2)-diesel dual fuel combustion mode with H2 supplemented into the intake air. Preliminary measurements using the 13-mode European Stationary Cycle (ESC) demonstrated the significant effect of H2 addition on the emissions of NO2. The detailed effects of H2 addition and engine load on NO2 emissions were examined at 1200 RPM. The addition of a small amount of H2 increased substantially the emissions of NO2 and the NO2/NOx ratio, especially at low load. Increasing the engine load was found to inhibit the enhancing effect of H2 on the conversion of NO to NO2 with the maximum NO2/NOx ratio observed at lower H2 concentration. The maximum NO2 emissions of the H2-diesel dual fuel operation were three (at 70% load) to five (at 10% load) times that of diesel operation. Further increasing the addition of H2 beyond the point with maximum NO2 emissions still produced more NO2 than for diesel-only operation. Based on the experimental data obtained, the engine load and maximum averaged bulk mixture temperature were not the main factors dominating the formation of NO2 in the H2-diesel dual fuel engine. A preliminary analysis demonstrated the significant effect of the unburned H2 on NO2 emissions. When mixed with the hot combustion product, the unburned H2 that survived the main combustion process might further oxidize to raise the HO2 levels and enhance the conversion of NO to NO2. In comparison, the changes in the combustion process including the start of combustion, combustion duration and maximum heat release rate may not contribute substantially to the increased NO2 emissions observed.  相似文献   

19.
This paper investigates the emissions of the unburned gaseous fuels of a heavy-duty diesel engine converted to operate under natural gas (NG)-diesel and hydrogen (H2)-diesel dual fuel combustion mode. The detailed effects of the addition of H2, NG, engine load, and engine speed on the exhaust emissions of the unburned H2, methane (CH4), and carbon monoxide (CO) were experimentally investigated. The combustion efficiencies of CH4 and H2 supplemented were also examined and compared.  相似文献   

20.
In this study, an experimental investigation on a naturally aspirated (NA), 8-L spark ignition engine fueled by biogas with various methane concentrations - which we called the N2 dilution test - was performed in terms of its thermal efficiency, combustion characteristics and emissions. The engine was operated at a constant engine rotational speed of 1800 rpm under a 60 kW power output condition and simulated biogas was employed to realize a wide range of changes in heating value and gas composition. The N2 dilution test results show that an increase of inert gas in biogas was beneficial to thermal efficiency enhancement and NOx emission reduction, while exacerbating THC emissions and cyclic variations. Then, as a way to achieve stable combustion for the lowest quality biogas, H2 addition tests were carried out in various excess air ratios. H2 fractions ranging from 5 to 30% were blended to the biogas and the effects of hydrogen addition on engine behavior were evaluated. The engine test results indicated that the addition of hydrogen improved in-cylinder combustion characteristics, extending lean operating limit as well as reducing THC emissions while elevating NOx generation. In terms of efficiency, however, a competition between enhanced combustion stability and increased cooling energy loss was observed with a rise in H2 concentration, maximizing engine efficiency at 5-10% H2 concentration. Moreover, based on the peak efficiency operating point, a set of optimum operating conditions for minimum emissions with the least amount of efficiency loss was suggested in terms of excess air ratio, spark ignition timing, and hydrogen addition rate as one of the main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号