首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 201 毫秒
1.
基于增量塑性损伤理论与纤维增强金属层板疲劳裂纹扩展唯象方法, 推导出在拉-压循环加载下, 纤维增强金属层板疲劳裂纹扩展速率预测模型。并通过玻璃纤维增强铝合金层板在应力比R=-1,-2的疲劳裂纹扩展实验对预测模型进行验证。结果表明, 纤维增强铝合金层板疲劳裂纹扩展的压载荷效应分为两种情况: 在有效循环应力比RC>0时, 表现为压载荷对铝合金层所承受残余拉应力的抵消作用; 当RC<0时, 表现为压载荷抵消残余拉应力后, 对纤维增强铝合金层板金属层的塑性损伤, 对疲劳裂纹扩展存在促进作用。纤维铝合金层板疲劳裂纹扩展的压载荷效应不可忽略, 本文中得出的在拉-压循环加载下疲劳裂纹扩展速率预测模型与实验结果符合较好。  相似文献   

2.
对GLARE36/5层板进行挤压性能试验研究,采用超声C扫描、断口微距拍摄和扫描电子显微镜等方法观测GLARE层板挤压渐进损伤过程和最终破坏模式。结果表明:GLARE层板挤压起始损伤为铝合金塑性变形;损伤扩展阶段,0°纤维主要承受挤压正应力,铝合金塑性变形增大,铺层间分层起始并扩展;0°纤维屈曲折断后层内纤维基体损伤和分层损伤急剧扩展,层板最终发生挤压破坏。将GLARE层板挤压失效分为层内失效和层间失效,采用应变描述的Hashin准则和界面单元方法并引入金属塑性建立GLARE层板挤压渐进损伤数值模型,数值模型对层板损伤起始位置、分层产生位置、损伤演化过程、最终破坏模式及破坏载荷进行了预测,计算结果与试验结果吻合较好,说明该计算方法能够有效模拟GLARE层板挤压渐进损伤性能。   相似文献   

3.
研究了粘剂性质、含量及残余应力状态对纤维-铝合金胶接层板(ARALL)疲劳裂纹扩展特性的影响,分析了裂纹扩展过程中的分层状态的变化,结果表明,ARALL层板内富胶层的剪切形变和伴随裂纹扩展的分层区越大,即这两方面耗散能量越多,则疲劳裂纺扩展速率越低;胶粘剂含量的影响不明显,给层板施加预应力极大降低了层板的疲劳裂纹扩展速率,其本质在于裂尖在同样的疲劳载荷下实际所受到的有效应力降低。  相似文献   

4.
对T300/QY8911复合材料层板进行了低速冲击、 冲击后压缩以及冲击后疲劳试验研究。通过对冲击后的层板进行目视检测和超声C扫描获得了层板受低速冲击后的若干损伤特征; 在压-压疲劳试验中, 测量了损伤的扩展情况。讨论了冲击能量与损伤面积以及冲击后剩余压缩强度的关系, 分析了含冲击损伤层合板在压缩载荷及压-压疲劳载荷下的主要破坏机制。结果表明, 低速冲击损伤对该类层板的强度和疲劳性能影响很大, 在3.75 J/mm的冲击能量下, 层板剩余压缩强度下降了65%; 在压-压疲劳载荷作用下, 其损伤扩展大致可分为两个阶段, 占整个疲劳寿命约60%的前一阶段损伤扩展较为缓慢; 而疲劳寿命的后半阶段损伤则开始加速扩展, 并导致材料破坏。  相似文献   

5.
通过对疲劳裂纹的产生、扩展机理研究和试验,结合疲劳试验数据分析了疲劳裂纹扩展与疲劳寿命的关系。试验结果及分析表明,大量经圆角滚压强化的球墨铸铁曲轴,疲劳试验运行107次在连杆颈与曲柄臂过度圆角产生微裂纹,该裂纹属于非扩展裂纹,继续试验时裂纹不扩展,试样在该载荷下具有无限疲劳寿命。  相似文献   

6.
针对ADB610新型低碳贝氏体钢,采取紧凑拉伸试样、恒幅加载方式,在应力比为0.1时进行3种不同加载载荷下多试样的疲劳裂纹扩展试验,并测出裂纹扩展长度a和循环寿命N的a-N试验数据。然后采取七点递增多项式法对a-N试验数据拟合计算疲劳裂纹扩展速率。结果表明,加载载荷较小时,ADB610钢循环寿命较长;在疲劳裂纹扩展的初始阶段,加载载荷小的疲劳裂纹扩展速率相对较慢,但随着疲劳裂纹逐渐扩展,加载载荷小的疲劳裂纹扩展速率反而更大一些。  相似文献   

7.
从试验出发,研究了含V型缺口悬臂梁在循环载荷作用下的疲劳裂纹扩展特性及其模态频率变化规律,分析了模态频率与裂纹扩展增量间的关联性。将裂纹扩展增量作为损伤参量,建立了基于模态频率下降率与损伤参量的关系。基于损伤力学,建立了裂纹损伤与循环加载次数的演化模型。结合模态频率下降率与裂纹损伤参量的关系,提出了一种基于模态频率下降率的缺口梁疲劳裂纹扩展寿命预测方法,实现了基于当前裂纹损伤和对应循环次数的疲劳裂纹扩展剩余寿命预测。结果表明,模态频率下降率对缺口梁的疲劳裂纹扩展寿命敏感,该方法预测的疲劳裂纹扩展寿命与实测的疲劳裂纹扩展寿命基本吻合。  相似文献   

8.
为研究纤维金属层板的微动疲劳特性,首先,基于三维坐标系下的临界平面法求解了纤维金属层板铝层临界平面上的应力和应变分量,并进一步求解了Smith-Watson-Topper (SWT)和I型Nita-Ogatta-Kuwabara (NOK)应变能密度参数;然后,建立了应变能密度参数-微动疲劳寿命关系式,并通过实验数据得到了寿命预测公式中的待定参数;最后,采用I型NOK应变能密度准则分析了铝层厚度、纤维层厚度、各层相对厚度和桥足圆角半径等对微动疲劳损伤位置和寿命的影响,并为纤维金属层板抗微动疲劳设计提出了一些合理化建议。结果表明:增加铝层厚度可以延长微动疲劳寿命,但增加纤维层厚度和桥足圆角半径不会改善微动疲劳特性。提出的方法可为分析纤维金属层板铆接和螺栓连接中的微动疲劳问题提供理论依据。   相似文献   

9.
泡沫金属夹层板自冲铆接头的疲劳性能及失效机理   总被引:1,自引:0,他引:1  
刘洋  何晓聪  邢保英  邓聪  张先炼 《材料导报》2018,32(14):2431-2436
对铝合金自冲铆接头及泡沫金属夹层结构自冲铆接头进行疲劳实验,通过三参数经验公式采用S-N曲线拟合法绘制接头的F-N曲线,分析接头的疲劳寿命及泡沫金属夹层对自冲铆接头疲劳性能的影响;采用扫描电子显微镜对接头的疲劳失效断口进行观测,分析其微观失效机理。结果表明:泡沫金属夹层缩短了自冲铆接头的疲劳寿命,不同泡沫金属夹层对自冲铆接头疲劳性能的影响具有差异性,在高疲劳载荷下泡沫铜夹层接头疲劳性能更优。三组接头疲劳失效形式都为下板断裂,在高疲劳载荷下裂纹易在铆扣区域萌生,在中低疲劳载荷下裂纹萌生于下板一侧,沿铆扣区域下侧向板材另一侧扩展。  相似文献   

10.
玻璃纤维-铝合金层板的拉伸和疲劳性能研究   总被引:2,自引:0,他引:2  
对单向和正交玻璃纤维-铝合金层板的拉伸和疲劳性能进行实验和分析,利用和修正了金属体积分数理论,对两种层板的拉伸性能进行验证.通过对两种层板裂纹扩展速率及裂纹扩展形貌的研究,得到两种层板的裂纹扩展速率方程, 并对玻璃纤维-铝合金层板的裂纹扩展机理进行分析.  相似文献   

11.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

12.
This paper is concerned with the development and application of an analytical model for predicting fatigue crack growth in fibre-reinforced metal laminates (FRMLs). An analytical model for the distribution of bridging traction is first introduced. Based upon observations of the delamination shapes in FRMLs under fatigue loading and a model for characterizing delamination growth in FRMLs, a model for predicting crack growth rates in CCT specimens of FRMLs is developed. The model is applied to two GLARE laminates (2/1, 3/2 lay-ups) under various cyclic stress levels and stress ratios. The predicted crack growth rates are compared with experimental data. The predicted crack growth rates agree well with the experimental results.  相似文献   

13.
This paper presents the investigation regarding fatigue crack growth prediction in Fibre Metal Laminates under variable amplitude fatigue loading. A recently developed constant amplitude analytical prediction model for Fibre Metal Laminates has been extended to predict fatigue crack growth under variable amplitude loading using the modified Wheeler model based on the Irwin crack-tip plasticity correction and effective stress intensity factor range (ΔKeff). The fatigue crack growth predictions made with this model have been compared with crack growth tests on GLARE center-cracked tension specimens under selective variable amplitude loading as well as flight simulation loading. The accuracy of the model is discussed in comparison with the experimental fatigue crack growth data.  相似文献   

14.
It is a difficult task to predict fatigue crack growth in engineering structures, because they are mostly subjected to variable amplitude loading histories in service. Many prediction models have been proposed, but no agreed model on fatigue life prediction adequately considering loading sequence effects exists. In our previous research, an improved crack growth rate model has been proposed under constant amplitude loading and its good applicability has been demonstrated in comparison with various experimental data. In this paper, the applicability of the improved crack growth rate model will be extended to variable amplitude loading by modifying crack closure level based on the concept of partial crack closure due to crack‐tip plasticity. It is assumed in this model that the crack closure level can instantly go to the peak/valley due to a larger compression/tensile plastic zone resulted from the overload/underload effect, and gradually recovers to the level of constant amplitude loading with crack propagation. To denote the variation in the affected zone of overload/underload, a modified coefficient based on Wheeler model is introduced. The improved crack growth rate model can explain the phenomena of the retardation due to overload and the tiny acceleration due to underload, even the minor retardation due to overload followed by underload. The quantitative analysis will be executed to show the capability of the model, and the comparison between the prediction results and the experimental data under different types of loading history will be used to validate the model. The good agreement indicates that the proposed model is able to explain the load interaction effect under variable amplitude loading.  相似文献   

15.
Almost all load bearing components usually experience variable amplitude loading (VAL) rather than constant amplitude loading (CAL) during their service lives. A single overload cycle introduced in a constant amplitude fatigue loading retards fatigue crack growth and increases residual fatigue life. Although many models have been proposed on this subject, but life prediction under these complex situations is still under constant improvement. The present study aims at evaluating retardation in fatigue life due to application of a single tensile overload spike by adopting an exponential model. The proposed model calculates not only parameters related with overload induced retardation in fatigue crack growth, but also residual life in case of 7020-T7 and 2024-T3 aluminum alloys with reasonable accuracy without integration of rate equation. The model also covers stage-II and stage-III of post-overload period.  相似文献   

16.
The objectives of this study were to investigate the effectiveness of a compliance method for analyzing the fatigue crack growth of GLARE3 fiber/metal laminates. The materials tested were GLARE3-5/4 (2.6 mm thick) and GLARE3-3/2 (1.4 mm thick). Centrally notched specimens with two kinds of notch length and two kinds of fiber orientation were fatigue tested under constant amplitude loading. The expression of the experimental stress intensity factor, Kexp, for the 2024-T3 aluminum-alloy layers of a GLARE3 is formulated and Kexp were obtained from the relationship between crack length and specimen compliance. The test results clarified the following: (1) da/dN–ΔKexp relationships roughly show the linear relationship independent of the maximum stress level, specimen thickness, notch length, and fiber orientations, (2) the da/dN–ΔKexp relationships approximately agree with the linear part and its extension of Paris–Erdogan’s law obtained for the da/dN–ΔK relationship of the 2024-T3 aluminum-alloy, (3) the compliance method is effective for analyzing fatigue crack growth in GLARE3 laminates.  相似文献   

17.
Fiber metal laminates are an advanced hybrid materials system being evaluated as a damage tolerance and light weight solution for future aircraft primary structures. This paper investigates the impact properties and damage tolerance of glass fiber reinforced aluminum laminates with cross-ply glass prepreg layers. A systematic low velocity impact testing program based on instrumented drop weight was conducted, and the characteristic impact energies, the damage area, and the permanent deflection of laminates are used to evaluate the impact performance and damage resistance. The post-impact residual tensile strength under various damage states ranging from the plastic dent, barely visible impact damage (BVID), clearly visible impact damage (CVID) up to the complete perforation was also measured and compared. Additionally, the post-impact fatigue behavior with different damage states was also explored. The results showed that both GLARE 4 and GLARE 5 laminates have better impact properties than those of 2024-T3 monolithic aluminum alloy. GLARE laminates had a longer service life than aluminum under fatigue loading after impact, and they did not show a sudden and catastrophic failure after the fatigue crack was initiated. The damage initiation, damage progression and failure modes under impact and fatigue loading were characterized and identified with microscopy, X-ray radiography, and by deply technique.  相似文献   

18.
Fibre metal laminates (FMLs), such as glass reinforced aluminium (GLARE), are a family of materials with excellent damage tolerance and impact resistance properties. This paper presents an evaluation of the low velocity impact behaviour and the post-impact fatigue behaviour of GLARE laminate adhesively bonded to a high strength aluminium alloy substrate as a fatigue crack retarder. The damage initiation, damage progression and failure modes under impact and fatigue loading were examined and characterised using an ultrasonic phased array C-scan together with metallography and scanning electron microscopy (SEM). After impact on the substrate, internal damage to the GLARE bonded on the opposite side of the substrate occurred in the form of fibre and matrix cracking. No delamination was detected at the GLARE/substrate bond. Before impact the bonded GLARE strap caused reductions in substrate fatigue crack growth rate of up to a factor of 5. After impact the retardation was a factor of 2. The results are discussed in terms of changes to the GLARE stiffness promoted by the impact damage.  相似文献   

19.
Abstract— Constant and variable amplitude (VA) loading fatigue studies were carried out on a 6261 aluminium alloy using cylindrical plain hour-glass specimens. Crack growth was monitored via surface replication using cellulose acetate.
Crack growth results at constant amplitude loading show the typical intermittent high and low periods of growth rate associated with crack-microstructure interactions. Acceleration in growth rate during an overload block depends on crack length and stress amplitude ratio. It appears to pass through a maximum at a crack length corresponding to the first microstructural barrier. Microstructural-based modelling is therefore required for small fatigue cracks, rather than solely closure-based modelling. The Navarro-de los Rios model of short fatigue crack growth appears able to provide good indications of crack growth rates under VA block loading, and gives reasonable life predictions.
For short cracks (surface length < 80 μm) and a small overload ratio (6.7%), crack growth may show severe retardation during the overload block. This is ascribed to crack tip blunting being more important than the increase in stresses when closure is low. It appears from a Miner's rule type exercise, that VA block loading has its major effect on growth at a surface crack length of 20 μm. This means that the crack initiation period cannot be ignored in life prediction models for small fatigue cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号