首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
以经SiO_2包覆的Fe_3O_4和4-氯苯基异氰酸酯修饰的壳聚糖为原料,六亚甲基双异氰酸酯(HDI)为连接剂,制得功能化Fe_3O_4@Si O_2-壳聚糖磁性微球(磁性微球C),并利用SEM、FTIR对其进行表征,考察了所得磁性微球C对Cr~(3+)和Ni~(2+)的吸附性能。结果表明:磁性微球C的平均粒径为520 nm左右且分散性好。对Cr~(3+)、Ni~(2+)的吸附在60 min内达到平衡,在吸附剂质量为0.2 g,Cr~(3+)浓度为2.5 mmol/L,p H=3.0时,Cr~(3+)的单位吸附量为191.1 mg/g;在Ni~(2+)浓度为0.1 mmol/L,pH=5.0时,Ni~(2+)的单位吸附量为4.725 mg/g。所测等温吸附数据既符合Langmuir模型,也符合Freundlich模型。  相似文献   

2.
采用纳米Fe_3O_4对人造沸石(NZ)进行改性,研究了吸附剂投加量、废水pH、不同交联剂、离子含量等对改性磁性沸石微球去除废水中Pb~(2+)性能的影响,分析了改性沸石的吸附动力学和吸附等温线。结果表明,在Pb~(2+)溶液pH=3,吸附剂投加量为0.6 g/L条件下,钙交联纳米Fe_3O_4改性沸石微球(Ca-MZS)对溶液中Pb~(2+)的去除率达93.4%,最大吸附量为77.1 mg/g,较NZ的最大吸附量8.02 mg/g有明显提高。Ca-MZS比铁交联纳米Fe_3O_4改性沸石微球(Fe-MZS)的最大吸附量高2.57 mg/g。Ca-MZS对Pb~(2+)的吸附过程符合准2级动力学模型和Freundlich模型。Pb~(2+)溶液分别加入Na~+、K~+时,Ca-MZS对Pb~(2+)去除率分别下降了9.3个、16.1个百分点。  相似文献   

3.
采用共沉淀法制备Fe_3O_4磁流体,用磁流体与乙二胺四乙酸二钠复合改性有机膨润土制备Fe_3O_4负载的改性磁性有机膨润土,并对其进行了红外光谱分析、扫描电子显微镜形貌分析、元素分析,测定了样品对不同基材上Pb~(2+)、Cr~(6+)吸附剩余量。结果表明,Fe_3O_4微粒能够负载到被乙二胺四乙酸二钠改性过的有机膨润土表面形成磁性集合体,改性磁性膨有机润土具有良好的超顺磁性,对Pb~(2+)、Cr~(6+)等核素有良好吸附性能,从而达到去除放射性核素的目的。  相似文献   

4.
《应用化工》2022,(2):219-223
以亲铀真菌黑曲霉和纳米Fe_3O_4为原料,制备了一种新型黑曲霉磁性生物吸附剂(Nano-Fe_3O_4 modified Aspergillus niger,NFAN)。研究了初始p H值、吸附时间、吸附剂投加量以及铀初始浓度等对NFAN吸附铀酰离子的影响,分析了吸附铀过程的动力学及热力学规律。结果表明,NFAN在初始浓度为6 mg/L,p H=7,NFAN的用量为0.15 g/L,吸附4 h。在此条件下,NFAN的铀吸附量为60.05 mg/g,铀吸附率可达76.36%,吸附过程符合准二级动力学模型。  相似文献   

5.
以亲铀真菌黑曲霉和纳米Fe_3O_4为原料,制备了一种新型黑曲霉磁性生物吸附剂(Nano-Fe_3O_4 modified Aspergillus niger,NFAN)。研究了初始p H值、吸附时间、吸附剂投加量以及铀初始浓度等对NFAN吸附铀酰离子的影响,分析了吸附铀过程的动力学及热力学规律。结果表明,NFAN在初始浓度为6 mg/L,p H=7,NFAN的用量为0.15 g/L,吸附4 h。在此条件下,NFAN的铀吸附量为60.05 mg/g,铀吸附率可达76.36%,吸附过程符合准二级动力学模型。  相似文献   

6.
以Fe_3O_4纳米粒子和海藻生物质炭(ABc)为原料,采用共沉淀法制备了磁性海藻生物质炭(Fe_3O_4@ABc)复合材料,并用于甲基橙(MO)的吸附。通过XRD、SEM、TEM、FTIR和VSM对Fe_3O_4@ABc复合材料进行了表征。考察了溶液pH、吸附剂添加量对MO吸附性能的影响,并进行了吸附动力学和等温吸附模型拟合。结果表明,Fe_3O_4纳米粒子成功复合到ABc表面,Fe_3O_4@ABc复合材料具有超顺磁性,在外在磁场的作用下能够快速分离;当m(ABc)∶m(Fe_3O_4)=2∶1时,制备的Fe_3O_4@ABc复合材料比表面积为622.88m2/g,平均孔径1.55 nm,具有良好的MO去除效果。当MO质量浓度为100 mg/L,Fe_3O_4@ABc添加量为10 mg,pH为3,吸附时间240 min,MO的去除率为96.14%。制备的Fe_3O_4@ABc复合材料对MO的吸附过程符合拟一级动力学模型,吸附等温线符合Freundlich模型,并以物理吸附为主,化学吸附为辅。  相似文献   

7.
采用化学共沉淀法原位制备了一种可便于磁性回收并吸附水中重金属离子(如Pb~(2+))的磁性纳米伊/蒙黏土。通过X射线衍射、Fourier变换红外光谱、场发射扫描电子显微镜、振动样品磁强计对样品进行了表征。结果表明:合成的Fe_3O_4纳米颗粒可原位复合附着于纳米伊/蒙黏土颗粒表面,使磁性纳米伊/蒙黏土的饱和磁化强度达到26.77 A·m~2/kg,并可有效地从浆体中磁分离出来。另外,水中Pb~(2+)的吸附研究表明,磁性纳米伊/蒙黏土吸附Pb~(2+)的动力学过程符合准二级动力学模型,且pH值和磁性纳米伊/蒙黏土加入量对在浆料中吸附Pb~(2+)的效果有着显著的影响。其等温吸附过程符合Langmuir模型,其最大单层饱和吸附量为22.5 mg/g。当pH=6时,Pb~(2+)的去除率达97.79%;当磁性纳米伊/蒙黏土加入量为1 g/L时,平衡吸附量为38.7 mg/g。  相似文献   

8.
利用实验室条件下制备的纳米零价铁(NZVI)、纳米FeOOH和纳米Fe_3O_4,研究不同环境因素条件下各纳米铁系物对As(Ⅲ)的吸附性能。通过扫描电镜和X射线衍射扫描三种铁系物的微观结构,并分析模拟吸附动力学和吸附等温线。批试验的结果显示:当pH值为6,As(Ⅲ)的初始浓度为0.5 mg/L,2 h内NZVI对溶液中As(Ⅲ)的去除率高达99%,最大吸附量为5.99 mg/g;纳米FeOOH的最佳吸附条件为pH值为5,As(Ⅲ)初始浓度1 mg/L,4 h内的去除率可达92%;纳米Fe_3O_4的最佳吸附条件为pH值为7,As(Ⅲ)初始浓度为1 mg/L,24 h的最终去除率为60%。共存离子影响试验表明,对三种纳米铁系物吸附作用影响最大的均是溶液中的磷酸根。对吸附机理进行研究,结果表明:三种纳米铁系物吸附As(Ⅲ)的过程符合伪二级动力学模型,NZVI和纳米FeOOH的吸附等温数据符合Freundlich模型,纳米Fe_3O_4的吸附等温模型更加符合Langmuir等温模型。  相似文献   

9.
《化学工程》2021,49(1)
以Fe_3O_4、壳聚糖和苯胺为原料,采用化学氧化聚合法制备聚苯胺磁性壳聚糖复合材料,通过傅里叶变换红外光谱和X射线衍射对其进行表征,考察了Cr(Ⅵ)离子初始质量浓度、吸附时间和pH值对水中重金属Cr(Ⅵ)离子吸附性能的影响,探讨了聚苯胺磁性壳聚糖对Cr(Ⅵ)离子的吸附动力学。结果表明:Fe_3O_4促进了聚苯胺壳聚糖的分散,提高了聚苯胺壳聚糖的吸附能力;在聚苯胺磁性壳聚糖吸附剂用量0.05 g、Cr(Ⅵ)离子的初始质量浓度350 mg/L、吸附时间100 min及pH值为6的条件下,Cr(Ⅵ)离子的吸附量最高,达到181.75 mg/g,吸附过程符合准二级动力学方程。  相似文献   

10.
针对废水中氟喹诺酮类抗生素盐酸环丙沙星(HCIP)的污染,以离子液体和二甲基亚砜(DMSO)共混溶液为溶剂,通过相反转技术制备了氧化石墨烯-纤维素复合膜(GOCE)和磁性氧化石墨烯-纤维素复合膜(FGCE)以除去HCIP。同时研究了氧化石墨烯质量分数、纳米Fe_3O_4质量分数、HCIP浓度、溶液温度、溶液pH、共存阴阳离子、水质以及再生次数等因素对复合膜吸附HCIP性能的影响。结果表明,氧化石墨烯和磁性纳米Fe_3O_4质量分数(相对于微晶纤维素质量)分别为5.0%和4.0%的复合膜FGCE对50 mg/L的HCIP溶液的平衡吸附量可达21.67 mg/g。当HCIP溶液质量浓度为10 mg/L时,其吸附率为91.97%。  相似文献   

11.
分别采用一锅法和两步法工艺制备了磁性羟基磷灰石复合材料(HAP/Fe_3O_4复合磁性材料)。通过X射线衍射(XRD)对两种方法合成的HAP/Fe_3O_4复合磁性材料进行微观结构表征与分析,并研究了HAP/Fe_3O_4复合磁性材料对Cd~(2+)的吸附性能。结果表明:羟基磷灰石均匀负载在Fe_3O_4微粒表面,HAP/Fe_3O_4复合磁性材料对Cd~(2+)的吸附性能比HAP明显提高,且一锅法合成的HAP/Fe_3O_4复合磁性材料中HAP在Fe_3O_4表面分布更均匀,更牢固,且比表面积更大,较两步法好,具有更好的磁分离能力。随着Cd~(2+)初始浓度由0. 02 mg/L增大到0. 1 mg/L,去除率均呈下降趋势,吸附量呈上升趋势,当Cd~(2+)初始浓度为0. 1 mg/L时,一锅法制得HAP/Fe_3O_4复合磁性材料对Cd~(2+)的去除率在90%以上,其吸附量较HAP吸附量提高30%以上,两步法制得HAP/Fe_3O_4复合磁性材料对Cd~(2+)的去除率在85%以上,其吸附量较HAP吸附量提高了20%以上。HAP/Fe_3O_4复合磁性材料在外加磁场的作用下具有良好的分离回收和循环利用性能,是一种潜在的重金属高效吸附材料。  相似文献   

12.
以Fe_3O_4磁性纳米粒子为核,通过控制溶液的pH制备了核-壳结构的Fe_3O_4@LDH复合材料。并将该材料作为吸附剂,用甲基橙(MO)来模拟废水染料,研究不同时间和不同浓度的条件下,Fe_3O_4@LDH复合材料对甲基橙溶液的吸附情况。结果表明,Fe_3O_4@LDH磁性复合材料对甲基橙的吸附平衡时间为60 min,最大吸附量为164 mg·g~(-1),吸附效果良好。同时,在外加磁场的作用下实现了快速的固液分离,表明所制备的磁性Fe_3O_4@LDH是一种易于分离的高效吸附剂。  相似文献   

13.
为了净化被Cr~(6+)离子污染的水资源,制备了Fe_3O_4/沸石/石墨三元复合材料。测试了其对Cr~(6+)离子的吸附特性,发现时间对Cr~(6+)离子吸附率的影响非常明显,随着吸附时间的增长对Cr~(6+)离子的吸附量明显增加,3h接近饱和,6h吸附率最高(为80.2%),充分发挥了3种原材料各自的优点而提高了吸附速度;通过磁性分析实验发现,该材料在磁场条件下可达到快速分离的目的。研究的三元复合材料具有制备简单、成本低、重复利用率高、吸附性能好等优点,可能成为广泛应用的新型吸附材料。  相似文献   

14.
本文制备了具有核/壳结构的磁性纳米颗粒Fe_3O_4@SiO_2,用马来酸酐和均苯四甲酸酐分别对Fe_3O_4@SiO_2纳米粒子进行接枝改性,分别标记为Fe_3O_4@SiO_2@M和Fe_3O_4@SiO_2@P,使其带有较多的负电荷,形成对金属离子有吸附作用的阴离子吸附剂。考察了两种吸附剂对水中Ni~(2+)的吸附性能。结果表明,两种吸附剂对低浓度的Ni~(2+)有较好的吸附作用。当Ni~(2+)浓度小于0.5g·L~(-1)时,两种吸附剂对Ni~(2+)去除效率均可达到100%。当吸附剂用量一定时,随Ni~(2+)浓度增加,去除率下降。  相似文献   

15.
采用共沉淀法制备了磁性羧甲基纤维素纳米粒子(CMC@Fe_3O_4),利用TEM、FTIR和VSM等手段对制备的CMC@Fe_3O_4进行了表征,探讨了CMC的最佳用量,并进行了吸附Cu2+性能研究。结果表明,CMC成功包覆在Fe_3O_4外层,制备的CMC@Fe_3O_4对Cu2+的最大吸附量为41.62 mg/g。CMC@Fe_3O_4对Cu2+的吸附较好地满足Langmuir方程,吸附过程可以用准二级动力学方程描述。  相似文献   

16.
本文利用沉淀氧化法合成Fe_3O_4粉末,研究反应温度、反应时间、碱用量对产物产量的影响,得出了最佳反应条件:反应温度80℃,反应时间40min,氢氧化钠的加入量150m L。此条件下得到的Fe_3O_4颗粒大小为2~3μm,表面光滑,粒径均匀,对Cu~(2+)的吸附量随初始浓度的增加而增加。当Cu~(2+)的初始浓度为300g·L~(-1)时,Fe_3O_4对Cu~(2+)的吸附量高达18.1mg·g~(-1)。  相似文献   

17.
近年来,工业的发展所带来的重金属污染问题已经越来越严重,在处理重金属污水方面,二氧化钛吸附法是一种新的处理方法。本研究采用溶胶—凝胶法制备纳米材料。纳米TiO_2/Fe_2O_3复合材料与传统纳米TiO_2材料相比,具有比表面积大、分散均匀等优点,是一种更为理想的固相吸附材料。采用紫外—可见光分光光度法测定溶液中Cr~(6+)的含量,考察了该材料对Cr~(6+)吸附的最佳条件为:p H值为3、温度为35℃、时间为25 min、吸附剂用量15mg,此条件下吸附性能达到最佳,吸附量为3 mg/g。  相似文献   

18.
以邻甲氧基苯胺为单体,通过化学氧化聚合法合成了单宁酸/硫酸掺杂聚邻甲氧基苯胺(POMA-H-GA),采用FTIR、XRD、SEM及BET对其结构进行了表征。通过平衡吸附实验考察了POMA-H-GA对Cr~(3+)的吸附性能,并以其为指标优化了Cr~(3+)溶液初始质量浓度、时间、温度、pH。结果表明:POMA-H-GA在Cr~(3+)初始质量浓度为0.1 g/L、时间3 h、温度25℃、pH=3.0~4.5时,吸附量为18.2 mg/g,吸附率达到93.2%,POMA-H-GA对几种重金属离子的吸附量大小顺序为Cr~(3+)Hg~(2+)Pb~(2+)Cd~(2+)。  相似文献   

19.
用Fe_3O_4对谷壳生物炭进行改性得到磁性生物炭。利用SEM、XRD对磁性生物炭进行表征,并通过响应面优化和共吸附实验探究该生物炭在共吸附系统中对As~(3+)和Cd~(2+)的吸附性能。结果表明,在pH为5.0、镉(砷)初始质量浓度分别为10 mg/L、吸附剂质量浓度为1 g/L时,镉和砷去除率达到最大。在共吸附实验中,As~(3+)和Cd~(2+)共存时,Cd~(2+)质量浓度大于20 mg/L时会抑制生物炭对As~(3+)的吸附,10 mg/L As~(3+)与生物炭达到平衡后可以使50 mg/L Cd~(2+)的吸附量由17.44 mg/g增加到31.91 mg/g,说明砷和镉之间存在协同作用,该协同作用是由于镉、砷与四氧化三铁形成了B型三元表面配合物,增大了镉的吸附量。  相似文献   

20.
《应用化工》2022,(2):294-297
采用溶剂热法制备Fe_3O_4纳米粒子,通过MPS和聚丙烯酸修饰,使其表面羧基化,再与NTA-Ni(2+)螯合,制备Fe_3O_4/MPS/PAA/NTA-Ni(2+)螯合,制备Fe_3O_4/MPS/PAA/NTA-Ni(2+)磁性复合纳米粒子。利用透射电镜、激光粒度仪、红外光谱进行表征。结果表明,Fe_3O_4/MPS/PAA/NTA-Ni(2+)磁性复合纳米粒子。利用透射电镜、激光粒度仪、红外光谱进行表征。结果表明,Fe_3O_4/MPS/PAA/NTA-Ni(2+)磁性复合纳米粒子的形貌为球形,且较为分散,其平均水合粒径为440 nm,Zeta电位为-15.8 mV,红外光谱证实了其化学结构。对组氨酸标签蛋白的分离能力为15.6μg蛋白质/mg磁性材料,说明此金属螯合吸附剂对组氨酸标签蛋白的选择性吸附有一定的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号