首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DPLL-based SAT solvers progress by implicitly applying binary resolution. The resolution proofs that they generate are used, after the SAT solver’s run has terminated, for various purposes. Most notable uses in formal verification are: extracting an unsatisfiable core, extracting an interpolant, and detecting clauses that can be reused in an incremental satisfiability setting (the latter uses the proof only implicitly, during the run of the SAT solver). Making the resolution proof smaller can benefit all of these goals: it can lead to smaller cores, smaller interpolants, and smaller clauses that are propagated to the next SAT instance in an incremental setting. We suggest two methods that are linear in the size of the proof for doing so. Our first technique, called Recycle-Units uses each learned constant (unit clause) (x) for simplifying resolution steps in which x was the pivot, prior to when it was learned. Our second technique, called   simplifies proofs in which there are several nodes in the resolution graph, one of which dominates the others, that correspond to the same pivot. Our experiments with industrial instances show that these simplifications reduce the core by ≈5% and the proof by ≈13%. It reduces the core less than competing methods such as run- till- fix, but whereas our algorithms are linear in the size of the proof, the latter and other competing techniques are all exponential as they are based on SAT runs. If we consider the size of the proof (the resolution graph) as being polynomial in the number of variables (it is not necessarily the case in general), this gives our method an exponential time reduction comparing to existing tools for small core extraction. Our experiments show that this result is evident in practice more so for the second method: rarely it takes more than a few seconds, even when competing tools time out, and hence it can be used as a cheap proof post-processing procedure.  相似文献   

2.
A recent series of experiments with a group of state-of-the-art SAT solvers and several well-defined classes of problem instances reports statistically significant performance variability for the solvers. A systematic analysis of the observed performance data, all openly archived on the Web, reveals distributions which we classify into three broad categories: (1) readily characterized with a simple 2-test, (2) requiring more in-depth analysis by a statistician, (3) incomplete, due to time-out limit reached by specific solvers. The first category includes two well-known distributions: normal and exponential; we use simple first-order criteria to decide the second category and label the distributions as near-normal, near-exponential and heavy-tail. We expect that good models for some if not most of these may be found with parameters that fit either generalized gamma, Weibull, or Pareto distributions. Our experiments show that most SAT solvers exhibit either normal or exponential distribution of execution time (runtime) on many equivalence classes of problem instances. This finding suggests that the basic mathematical framework for these experiments may well be the same as the one used to test the reliability or lifetime of hardware components such as lightbulbs, A/C units, etc. A batch of N replicated hardware components represents an equivalence class of N problem instances in SAT, a controlled operating environment A represents a SAT solver A, and the survival function (where x represents the lifetime) is the complement of the solvability function where x may represent runtime, implications, backtracks, etc. As demonstrated in the paper, a set of unrelated benchmarks or randomly generated SAT instances available today cannot measure the performance of SAT solvers reliably — there is no control on their hardness. However, equivalence class instances as defined in this paper are, in effect, replicated instances of a specific reference instance. The proposed method not only provides a common platform for a systematic study and a reliable improvement of deterministic and stochastic SAT solvers alike but also supports the introduction and validation of new problem instance classes.  相似文献   

3.
Parameterized Proof Complexity   总被引:1,自引:1,他引:0  
We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter (we call such a formula a parameterized contradiction). One could separate the parameterized complexity classes FPT and W[SAT] by showing that there is no fpt-bounded parameterized proof system for parameterized contradictions, i.e., that there is no proof system that admits proofs of size f(k)n O(1) where f is a computable function and n represents the size of the propositional formula. By way of a first step, we introduce the system of parameterized tree-like resolution and show that this system is not fpt-bounded. Indeed, we give a general result on the size of shortest tree-like resolution proofs of parameterized contradictions that uniformly encode first-order principles over a universe of size n. We establish a dichotomy theorem that splits the exponential case of Riis’s complexity gap theorem into two subcases, one that admits proofs of size f(k)n O(1) and one that does not. We also discuss how the set of parameterized contradictions may be embedded into the set of (ordinary) contradictions by the addition of new axioms. When embedded into general (DAG-like) resolution, we demonstrate that the pigeonhole principle has a proof of size 2 k n 2. This contrasts with the case of tree-like resolution where the embedded pigeonhole principle falls into the “non-FPT” category of our dichotomy.  相似文献   

4.
Razborov (1996) recently proved that polynomial calculus proofs of the pigeonhole principle must have degree at least ⌈n/2⌉ + 1 over any field. We present a simplified proof of the same result.?Furthermore, we show a matching upper bound on polynomial calculus proofs of the pigeonhole principle for any field of suficiently large characteristic, and an ⌈n/2⌉ + 1 lower bound for any subset sum problem over the field of reals.?We show that these degree lower bounds also translate into lower bounds on the number of monomials in any polynomial calculus proof, and hence on the running time of most implementations of the Gr?bner basis algorithm. Received: October 14, 1997.  相似文献   

5.
A resolution proof of an unsatisfiable propositional formula in conjunctive normal form is a Davis-Putnam resolution proof iff there exists a sequence of the variables of the formula such thatx is eliminated (with the resolution rule) beforey on any branch of the proof tree representing the resolution proof, only ifx is beforey in this sequence. Davis-Putnam resolution is one of several resolution restrictions. It is complete.We present an infinite family of unsatisfiable propositional formulas and show: These formulas have unrestricted resolution proofs whose length is polynomial in their size. All Davis-Putnam resolution proofs of these formulas are of superpolynomial length. In the terminology of [4, definition 1.5]: Davis-Putnam resolution does notp-simulate unrestricted resolution.  相似文献   

6.
In this paper we prove an exponential lower bound on the size of bounded-depth Frege proofs for the pigeonhole principle (PHP). We also obtain an (loglogn)-depth lower bound for any polynomial-sized Frege proof of the pigeonhole principle. Our theorem nearly completes the search for the exact complexity of the PHP, as S. Buss has constructed polynomial-size, logn-depth Frege proofs for the PHP. The main lemma in our proof can be viewed as a general Håstad-style Switching Lemma for restrictions that are partial matchings. Our lower bounds for the pigeonhole principle improve on previous superpolynomial lower bounds.  相似文献   

7.
We derive a semidefinite relaxation of the satisfiability (SAT) problem and discuss its strength. We give both the primal and dual formulation of the relaxation. The primal formulation is an eigenvalue optimization problem, while the dual formulation is a semidefinite feasibility problem. We show that using the relaxation, a proof of the unsatisfiability of the notorious pigeonhole and mutilated chessboard problems can be computed in polynomial time. As a byproduct we find a new `sandwich" theorem that is similar to the sandwich theorem for Lovász' -function. Furthermore, the semidefinite relaxation gives a certificate of (un)satisfiability for 2SAT problems in polynomial time. By adding an objective function to the dual formulation, a specific class of polynomially solvable 3SAT instances can be identified. We conclude with discussing how the relaxation can be used to solve more general SAT problems and with some empirical observations.  相似文献   

8.
A recent series of experiments with a group of state-of-the-art SAT solvers and several well-defined classes of problem instances reports statistically significant performance variability for the solvers. A systematic analysis of the observed performance data, all openly archived on the Web, reveals distributions which we classify into three broad categories: (1) readily characterized with a simple 2-test, (2) requiring more in-depth analysis by a statistician, (3) incomplete, due to time-out limit reached by specific solvers. The first category includes two well-known distributions: normal and exponential; we use simple first-order criteria to decide the second category and label the distributions as near-normal, near-exponential and heavy-tail. We expect that good models for some if not most of these may be found with parameters that fit either generalized gamma, Weibull, or Pareto distributions. Our experiments show that most SAT solvers exhibit either normal or exponential distribution of execution time (runtime) on many equivalence classes of problem instances. This finding suggests that the basic mathematical framework for these experiments may well be the same as the one used to test the reliability or lifetime of hardware components such as lightbulbs, A/C units, etc. A batch of N replicated hardware components represents an equivalence class of N problem instances in SAT, a controlled operating environment A represents a SAT solver A, and the survival function R A (x) (where x represents the lifetime) is the complement of the solvability function S A (x)=1–R A (x) where x may represent runtime, implications, backtracks, etc. As demonstrated in the paper, a set of unrelated benchmarks or randomly generated SAT instances available today cannot measure the performance of SAT solvers reliably – there is no control on their 'hardness'. However, equivalence class instances as defined in this paper are, in effect, replicated instances of a specific reference instance. The proposed method not only provides a common platform for a systematic study and a reliable improvement of deterministic and stochastic SAT solvers alike but also supports the introduction and validation of new problem instance classes.  相似文献   

9.
The past decade has seen clause learning as the most successful algorithm for SAT instances arising from real-world applications. This practical success is accompanied by theoretical results showing clause learning as equivalent in power to resolution. There exist, however, problems that are intractable for resolution, for which clause-learning solvers are hence doomed. In this paper, we present extended clause learning, a practical SAT algorithm that surpasses resolution in power. Indeed, we prove that it is equivalent in power to extended resolution, a proof system strictly more powerful than resolution. Empirical results based on an initial implementation suggest that the additional theoretical power can indeed translate into substantial practical gains.  相似文献   

10.
In the context of reasoning on quantified Boolean formulas (QBFs), the extension of propositional logic with existential and universal quantifiers, it is beneficial to use preprocessing for solving QBF encodings of real-world problems. Preprocessing applies rewriting techniques that preserve (satisfiability) equivalence and that do not destroy the formula’s CNF structure. In many cases, preprocessing either solves a formula directly or modifies it such that information helpful to solvers becomes better visible and irrelevant information is hidden. The application of a preprocessor, however, prevented the extraction of proofs for the original formula in the past. Such proofs are required to independently validate the correctness of the preprocessor’s rewritings and the solver’s result as well as for the extraction of solutions in terms of Skolem functions. In particular for the important technique of universal expansion efficient proof checking and solution generation was not possible so far. This article presents a unified proof system with three simple rules based on quantified resolution asymmetric tautology (\(\mathsf {QRAT}\)). In combination with an extended version of universal reduction, we use this proof system to efficiently express current preprocessing techniques including universal expansion. Further, we develop an approach for extracting Skolem functions. We equip the preprocessor bloqqer with \(\mathsf {QRAT}\) proof logging and provide a proof checker for \(\mathsf {QRAT}\) proofs which is also able to extract Skolem functions.  相似文献   

11.
12.
We show that polynomial calculus proofs (sometimes also called Groebner proofs) of the pigeonhole principle must have degree at least over any field. This is the first non-trivial lower bound on the degree of polynomial calculus proofs obtained without using unproved complexity assumptions. We also show that for some modifications of , expressible by polynomials of at most logarithmic degree, our bound can be improved to linear in the number of variables. Finally, we show that for any Boolean function in n variables, every polynomial calculus proof of the statement “ cannot be computed by any circuit of size t,” must have degree . Loosely speaking, this means that low degree polynomial calculus proofs do not prove . Received: January 15, 1997.  相似文献   

13.
Producing and checking proofs from SMT solvers is currently the most feasible method for achieving high confidence in the correctness of solver results. The diversity of solvers and relative complexity of SMT over, say, SAT means that flexibility, as well as performance, is a critical characteristic of a proof-checking solution for SMT. This paper describes such a solution, based on a Logical Framework with Side Conditions (LFSC). We describe the framework and show how it can be applied for flexible proof production and checking for two different SMT solvers, clsat and cvc3. We also report empirical results showing good performance relative to solver execution time.  相似文献   

14.
Nowadays, many real-world problems are encoded into SAT instances and efficiently solved by modern SAT solvers. These solvers, usually known as Conflict-Driven Clause Learning (CDCL) SAT solvers, include a variety of sophisticated techniques, such as clause learning, lazy data structures, conflict-based adaptive branching heuristics, or random restarts, among others. However, the reasons of their efficiency in solving real-world, or industrial, SAT instances are still unknown. The common wisdom in the SAT community is that these technique exploit some hidden structure of real-world problems.In this thesis, we characterize some important features of the underlying structure of industrial SAT instances. Namely, they are the community structure and the self-similar structure. We observe that most industrial SAT formulas, viewed as graphs, have these two properties. This means that (i) in a graph with a clear community structure, i.e. having high modularity, we can find a partition of its nodes into communities such that most edges connect nodes of the same community; and (ii) in a graph with a self-similar pattern, i.e. being fractal, its shape is kept after re-scalings, i.e., grouping sets of nodes into a single node. We also analyze how these structures are affected by the effects of CDCL techniques during the search.Using the previous structural studies, we propose three applications. First, we face the problem of generating pseudo-industrial random SAT instances using the notion of modularity. Our model generates instances similar to (classical) random SAT formulas when the modularity is low, but when this value is high, our model is also adequate to model realistic pseudo-industrial problems. Second, we propose a method based on the community structure of the instance to detect relevant learnt clauses. Our technique augments the original instance with this set of relevant clauses, and this results into an overall improvement of the efficiency of several state-of-the-art CDCL SAT solvers. Finally, we analyze the classification of industrial SAT instances into families using the previously analyzed structure features, and we compare them to other classifiers commonly used in portfolio SAT approaches.In summary, this dissertation extends the understandings of the structure of SAT instances, with the aim of better explaining the success of CDCL techniques and possibly improve them, and propose a number of applications based on this analysis of the underlying structure of SAT formulas.  相似文献   

15.
In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, called Q-ALL SAT, arises in many other applications. In this paper, we introduce a special subclass of Q-ALL SAT that is at the first level of the polynomial hierarchy. We develop a solution algorithm for the general case that uses a backtracking search and a new form of learning of clauses. Results are reported for two sets of instances involving a robot route problem and a game problem. For these instances, the algorithm is substantially faster than state-of-the-art solvers for quantified Boolean formulas.  相似文献   

16.
In this paper, we introduce general techniques for extending classes of polynomially solvable SAT instances. We generalize the approach of Gallo and Scutellà, who defined the hierarchy { i }, where l corresponds to the Generalized Horn class. We propose a family of polynomial hierarchies, where a polynomial hierarchy { i } is a sequence of polynomially solvable classes that cover the whole set of CNF formulas, and such that i i+1 fori0. Following a different approach, based on a new decomposition technique, we define the class of Split-Horn formulas, which is an extension of l. We discuss and compare the basic properties of the proposed classes; polynomial time algorithms for recognition and solution are provided.  相似文献   

17.
We prove a lower bound of the formN (1) on the degree of polynomials in a Nullstellensatz refutation of theCount q polynomials over m , whereq is a prime not dividingm. In addition, we give an explicit construction of a degreeN (1) design for theCount q principle over m . As a corollary, using Beameet al. (1994) we obtain a lower bound of the form 2 N(1) for the number of formulas in a constant-depth Frege proof of the modular counting principleCount q N from instances of the counting principleCount m M .We discuss the polynomial calculus proof system and give a method of converting tree-like polynomial calculus derivations into low degree Nullstellensatz derivations.Further we shwo that a lower bound for proofs in a bounded depth Frege system in the language with the modular counting connectiveMOD p follows from a lower bound on the degree of Nullstellensatz proofs with a constant number of levels of extension axioms, where the extension axioms comprise a formalization of the approximation method of Razborov (1987) and Smolensky (1987) (in fact, these two proof systems are basically equivalent).  相似文献   

18.
19.
DPLL (for Davis, Putnam, Logemann, and Loveland) algorithms form the largest family of contemporary algorithms for SAT (the propositional satisfiability problem) and are widely used in applications. The recursion trees of DPLL algorithm executions on unsatisfiable formulas are equivalent to treelike resolution proofs. Therefore, lower bounds for treelike resolution (known since the 1960s) apply to them. However, these lower bounds say nothing about the behavior of such algorithms on satisfiable formulas. Proving exponential lower bounds for them in the most general setting is impossible without proving PNP; therefore, to prove lower bounds, one has to restrict the power of branching heuristics. In this paper, we give exponential lower bounds for two families of DPLL algorithms: generalized myopic algorithms, which read up to n 1−ε of clauses at each step and see the remaining part of the formula without negations, and drunk algorithms, which choose a variable using any complicated rule and then pick its value at random. Extended abstract of this paper appeared in Proceedings of ICALP 2004, LNCS 3142, Springer, 2004, pp. 84–96. Supported by CCR grant CCR-0324906. Supported in part by Russian Science Support Foundation, RAS program of fundamental research “Research in principal areas of contemporary mathematics,” and INTAS grant 04-77-7173. §Supported in part by INTAS grant 04-77-7173.  相似文献   

20.
We work with an extension of Resolution, called Res(2), that allows clauses with conjunctions of two literals. In this system there are rules to introduce and eliminate such conjunctions. We prove that the weak pigeonhole principle PHPcnn and random unsatisfiable CNF formulas require exponential-size proofs in this system. This is the strongest system beyond Resolution for which such lower bounds are known. As a consequence to the result about the weak pigeonhole principle, Res(log) is exponentially more powerful than Res(2). Also we prove that Resolution cannot polynomially simulate Res(2) and that Res(2) does not have feasible monotone interpolation solving an open problem posed by Krají ek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号