首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper examines and ranks restoration alternatives for improving fish habitat by evaluating tradeoffs between fish production and restoration costs. Optimization modelling is used to maximize out‐migrating coho salmon (Oncorhynchus kisutch) from a natal stream and is applied as a case study in California's Shasta River. Restoration activities that alter flow and water temperature conditions are the decision variables in the model and include relocating a major diversion, increasing riparian shading, increasing instream flow, restoring a cool‐water spring and removing a dam. A budget constraint limits total restoration expenditures. This approach combines simple fish population modelling with flow and water quality modelling to explore management strategies and aid decision making. Previous fish habitat optimization research typically uses single restoration strategies, usually by altering reservoir releases or modifying outlet structures. Our method enlarges the solution space to more accurately represent extensive and integrated solutions to fish habitat problems. Results indicate that restoration alternatives can be prioritized by fish habitat improvement and restoration cost. For the Shasta River case study, considerable habitat restoration investments were required before fish productivity increased substantially. This exercise illustrates the potential of ecological optimization for highlighting promising restoration approaches and dismissing poor alternatives. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Low instream flows and high water temperatures are two factors limiting survival of native salmon in California's Shasta River. This study examines the potential to improve fish habitat conditions by better managing water quantity and quality using flow and water temperature simulation to evaluate potential restoration alternatives. This analysis provides a reasonable estimate of current and potential flows and temperatures for a representative dry year (2001) in the Shasta River, California. Results suggest restoring and protecting cool spring‐fed sources provides the most benefit for native salmon species from a broad range of restoration alternatives. Implementing a combination of restoration alternatives further improves instream habitat. Results also indicate that substituting higher quality water can sometimes benefit native species without increasing environmental water allocations. This study shows the importance of focusing on the limitations of specific river systems, rather than systematically increasing instream flow as a one size fits all restoration approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In British Columbia, side‐channels have been built to compensate for lost salmonid habitat. Most are structurally simple with little in‐stream wood; however, they support high densities of juvenile coho salmon. We longitudinally divided in halves the top 100 m of two dead‐end artificial side‐channels, one side‐channel with low winter water temperatures (surface‐fed) and one with relatively higher water temperatures (groundwater‐fed), closed the downstream end of each side‐channel with two‐way traps, and treated only one half of each channel with bundles of wood. Trapped fish were marked daily and coho salmon movement, growth and smolt output were monitored for two years. Wood addition increased juvenile coho winter carrying capacity and spring smolt output only in the ‘colder’ surface‐fed side‐channel. In contrast, in the groundwater‐fed side‐channel, with relatively higher water temperatures, the wood treatment slightly reduced the channel's carrying capacity and the spring output of coho salmon smolts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
During the summer in the main‐stem Klamath River, juvenile salmonids respond positively to cooler tributary temperatures by congregating in large schools at the mouths of these tributaries, referred to as thermal refugia. The purpose of this paper is to summarize results from coho salmon (Oncorhynchus kisutch) thermal refugia studies conducted since 2006 in the Klamath River. Results showed that juvenile coho salmon started using thermal refugia when the Klamath River main‐stem temperature approached approximately 19 °C. The majority of the juvenile coho salmon within the studied thermal refugia were found in the slower velocity habitat associated with cover. Juvenile coho salmon counts in the studied thermal refugia dramatically decreased at temperatures >22–23 °C, suggesting that this approximates their upper thermal tolerance level. Although some juvenile coho salmon were very mobile, others chose, until smoltification, to rear in the mouths and lower reaches of non‐natal tributaries where thermal refugia occurred, apparently because of suitable habitat conditions. Information gained from these investigations will improve our knowledge of the life history of coho salmon in the Klamath River drainage and how they use the main‐stem river. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
As rivers warm, cold‐water fish species may alleviate thermal stress by moving into localized thermal refuges such as cold‐water plumes created by cool tributary inflows. We quantified use of two tributary confluence plumes by juvenile steelhead, Oncorhynchus mykiss, throughout the summer, including how trout positioned themselves in relation to temperature within confluence plumes. At two confluences, Cedar and Elder creeks, along the South Fork Eel River, California, USA, we monitored temperatures using in situ logger grids throughout summer 2016. Fish were counted within confluences via snorkel surveys five times a day on 5 days at each site. We found diel and seasonal dependence on confluence use by steelhead, especially at the Cedar Creek confluence, where mainstem temperatures exceeded 28°C. At this site, fish moved into the confluence on the warmest days and warmest times of the day. Fish observed within the Cedar Creek confluence plume were most common in locations between 20–22°C, rather than the coldest locations (14.5°C). At Elder Creek, where mainstem temperatures remained below 24°C, there was little relationship between mainstem temperature and steelhead presence in the confluence plume. At both sites, steelhead distribution within plumes was influenced by spatial variation of temperature and mean temperature in surveyed grid cells. Our results show that cool tributaries flowing into warmer mainstem reaches (over 24°C) likely create important thermal refuges for juvenile steelhead. As mainstem rivers warm with climate change, cool‐water tributary inputs may become more important for sustaining cold‐water salmonids near the southern end of their range.  相似文献   

6.
We describe patterns of emergence and downstream movement by recently emerged fry of two non-native salmonids in the Great Lakes region, North America. Our primary objectives were to describe the timing of emergence in relation to spring flooding, and to examine the effects of reach-level complexity of stream habitat on rates of movement. Emergence and movement patterns of coho salmon and brown trout fry were assessed over an eight-week period in two reaches distinguished by differences in channel woody debris. Fry emergence occurred from mid-March to early May, and peaked in early to mid-April. Movement during this period was uncorrelated with upstream densities of resident fry and fish moving downstream did not appear moribund or in poor condition. Nearly twice as many fish moved through the simple reach that lacked woody debris cover even though upstream densities of resident fry were generally greater in the complex reach. The results reported here indicate that peak emergence occurs in close association with the timing of spring floods. Variability in the timing of either emergence or spring floods could have profound effects on the size of coho salmon and brown trout populations within streams of this region. Results from this study further suggest that greater habitat complexity may reduce downstream movements of newly emerged salmonid fry in a natural system.  相似文献   

7.
The habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) was examined in three tributaries of Lake Ontario. A total of 1781 habitat observations were made on Chinook salmon (698) and coho salmon (1083). During both spring and fall, subyearling coho salmon used pool habitat with abundant cover. During spring, principal component analysis revealed that water depth was the most important variable governing subyearling Chinook salmon habitat use. Substrate materials used by Chinook salmon in the spring and coho salmon in the fall were significantly smaller than were present on average within the study reaches. When the two species occurred sympatrically during spring they exhibited similar habitat selection. Although the habitat used by coho salmon in Lake Ontario tributaries was consistent with observations of habitat use in their native range, higher water velocities were less important to Chinook salmon than has previously been reported.  相似文献   

8.
The lowermost 20 km of the River Surna, northwestern Norway receives cool water during summer from a hypolimnetic release mountain reservoir. In this part of the river, yearlings of both Atlantic salmon and brown trout are significantly smaller compared with those in the upper section of the river, which is unaffected by the cold water release. The slower growth below the power station causes both Atlantic salmon and anadromous brown trout to smoltify one year later compared with fish in the upper section of the river. This leads to higher mortality and therefore lower production of both adult salmon and trout.  相似文献   

9.
Pacific salmon (Oncorhynchus) use a variety of rearing environments prior to seaward migration, yet large river habitats and their use have not been well defined, particularly at the southernmost salmon range where major landscape‐level alterations have occurred. We explored juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) presence along the river continuum and in main‐channel and off‐channel habitats of a regulated California Mediterranean‐climate river. Over an 8‐year period, off‐channels of the lower Mokelumne River exhibited slower and warmer water than the main‐channel. Probability of salmonid presence varied by stream reach and habitat types. Steelhead and Chinook salmon both demonstrated transitional responses to the dry season, with juveniles leaving off‐channels by midsummer. This corresponded to flow recession, increasing water temperatures, salmonid growth and end of emigration period. Main‐channel steelhead observations continued until the following storm season, which brought cool flood flows to reconnect off‐channels and the next juvenile cohort of both species to the river. Within arid climates, low‐gradient off‐channels appear more transiently used than in cooler and more northern humid climate systems. Within a highly regulated Mediterranean‐climate river, off‐channel habitats become increasingly scarce, disconnected or temperature limiting in low‐gradient reaches both seasonally and due to anthropogenic modifications. These observations may provide guidance for future management within large salmon streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Non‐uniform groundwater discharge into streams influences temperature, a vital stream physical property recognized for its dominant controls on biological processes in lotic habitats at multiple scales. Understanding such spatially heterogeneous processes and their effects is difficult on the basis of stream temperature models often calibrated with discrete temperature measurements. This study focused on examining the effect of groundwater discharge on stream temperature using a physically based stream temperature model calibrated on spatially rich high‐resolution temperature measurements. A distributed temperature sensing (DTS) system with a 1.8‐km fibre optic cable was used to collect temperature measurements for every 1 m of the reach length at 3‐min temporal resolution in the stream Elverdamsåen. The groundwater inflow locations identified using DTS data and 24‐h temperature measurements (14:00 h 6 May 2011 to 14:00 h 7 May 2011) were used for further calibration of the stream temperature model. With 19 inflow locations, the model simulated temperature trends closely mirroring the observed DTS profile with a root mean square error of 0.85 °C. The aggregation of inflows at specific locations forced the model to simulate stepwise inflow signals and small change in downstream temperature. In turn, the DTS data exemplified spiked signals with no change in downstream temperature, a typical characteristic of lowland streams. In spite of the difference in modelled and measured inflow signals, the results indicate that the represented groundwater inflows imperatively controlled the spatial variations of temperature within the study reach, creating three unique thermal zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Gas bubble disease (GBD) has been recognized as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid‐channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two‐dimensional (2‐dimensional) hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioural avoidance of the high TDGS plume. We observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of the time spent in the Bonneville Dam tailrace and 88.1% of the time in the Ice Harbor Dam tailrace. The majority of depth uncompensated exposure occurred at TDGS levels >115%. Adult Chinook salmon tended to migrate near the shoreline and they tended to remain in relatively deep water. Adults moved into the high dissolved‐gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. When water depths decreased due to reduced river discharge, adults tended to migrate in the deeper navigation channel downstream from Ice Harbor Dam. The strong influence of dam operations on the position of the high‐TDGS plume and shoreline‐orientation behaviours of adults suggest that exposure of adult salmonids to high‐TDGS conditions may be minimized using operational conditions that direct the spilled water mid‐channel. Our approach illustrates the potential for combined field and modelling efforts to estimate the fine‐scale environmental conditions encountered by fishes in natural and regulated rivers. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

12.
Stream temperature dynamics within a New Zealand glacierized river basin   总被引:1,自引:0,他引:1  
Knowledge of river thermal dynamics for glacierized basins is limited, despite the high sensitivity of these systems to climatic change/variability. This study examined spatio‐temporal water column and streambed temperature dynamics within a New Zealand glacierized river basin over two melt seasons. Water column temperature was recorded at three sites along the mainstem channel and four hillslope/groundwater‐fed tributaries. Air temperature, precipitation and stream discharge were monitored to characterize hydroclimatological conditions. Streambed temperature was monitored at the upper and lower main river sites at 0.05, 0.2 and 0.4 m depth. Water column temperature rose on average 0.6°C km?1 along the glacier‐fed mainstem. Temperature was elevated during warmer periods but the downstream increase was reduced due to greater meltwater production (consequently a larger total stream flow volume for atmospheric heating) plus a proportional reduction in warmer groundwater contributions. Hillslope/groundwater‐fed tributaries yielded a range of temperature patterns, indicating variable sourcing (meltwater or rainfall) and residence times. In the upper basin, streambed temperature was warmer than the water column, suggesting groundwater upwelling; however, during high runoff events, water column and streambed temperature converged, indicating downwelling/heat advection by channel water. At the lower site, streambed temperature mirrored the water column, suggesting greater surface water/atmospheric influences. Key drivers of stream thermal regime were: (1) relative water source contributions, (2) prevailing hydroclimatological conditions, (3) distance from source, (4) total stream flow volume and (5) basin factors (specifically, valley/channel geomorphology and riparian forest). High magnitude precipitation events produced a contrasting stream thermal response to that reported elsewhere. In contrast to European alpine research, streams showed a reduced thermal range owing to the relatively mild, wet melt season climate. This New Zealand case study highlights the importance of understanding basin‐specific modification of energy and hydrological fluxes for accurate prediction of stream thermal dynamics/habitat and ecological response to climatic variability and change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The chief objective of this study was to analyse the effects of altered water temperature, due to the hydropower regulation of the River Alta, on growth of Atlantic salmon parr. The river was developed for hydroelectric purposes in 1987. A 110 m high concrete dam was built in the main river 49 km upstream from the outlet to the sea. The outlet of the power station is located 2.5 km downstream from the dam. The annual regime of water temperature has been altered downstream from the power station because of the regulation. It has decreased 1–2° C during June, July and the first half of August, while it has increased up to 3° C during late summer. During winter, water temperature has increased from 0° C to about 0.3–0.4° C. Atlantic salmon is the predominant fish species in the river. They can penetrate 46 km from the sea, up to the outlet of the power station. In this paper I have studied the relationship between growth of juvenile Atlantic salmon and water temperature in the upper part of the river. At similar temperatures, the growth rate of salmon parr in the River Alta is higher in early summer than later in the growing season. In early summer the salmon grew faster than the maximum rate predicted by a recently published model. Therefore, I adjusted the model to describe growth rates of salmon in early summer (ice break to mid‐August), using data derived prior to the hydropower development (1981–1986). The new model proved effective at describing growth rates of fish in early summer following the hydropower development (1987–1996). After development, growth rates decreased during early summer, but increased correspondingly later in the season. There was close agreement between these growth changes and the altered annual regime of river temperature. Overall, only minor changes in annual growth rates have been observed after the hydropower development. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Hypolimnial releases from dams during periods of thermal stratification modify the downstream riverine thermal regime by decreasing water temperature and reducing natural diel thermal variability. This cold‐water thermal pollution in rivers can persist for hundreds of kilometres downstream of dams and impact important ecological processes such as fish spawning. To mitigate this problem, a first‐of‐its‐kind thermal curtain was fitted to the large bottom release Burrendong Dam on the Macquarie River, Australia. The thermal curtain acts by directing warmer, near‐surface epilimnial water to the low‐level hypolimnial offtake. This study aimed to test the efficacy of the thermal curtain by measuring temperatures before and after the curtains installation, quantifying the magnitude and extent of cold‐water thermal pollution along the Macquarie River downstream of Burrendong Dam. Epilimnial releases with use of the curtain increased diel temperature ranges and the mean monthly water temperature below the dam. Epilimnial releases with use of the curtain increased diel temperature ranges from 0.9°C to 2.5°C and reduced the difference between the mean monthly water temperature of an upstream control and a downstream site by up to 3.5°C. A comparison of the monthly temperature means along the river, indicated that thermal recovery, whereby temperatures returned to within the natural range of upstream temperatures occurred 45 km downstream of the dam during summer when the thermal curtain was deployed, compared with approximately 200 km prior to deployment of the curtain. Our study suggests that the use of thermal curtains can reduce cold‐water thermal pollution and improve ecological outcomes for river ecosystems downstream of dams.  相似文献   

15.
Despite the importance of thermal conditions in influencing biodiversity of alpine river systems, knowledge of year round stream temperature variability is very limited. This paper advances understanding of alpine stream temperature dynamics using hourly resolution data collected over two consecutive years at five sites within a glacierized basin in the French Pyrénées. The potential utility of temperature for understanding river flow patterns at ungauged sites (most notably during winter) is explored. The results indicated marked heterogeneity in water column temperatures; groundwater streams were typically warmer and more thermally stable than those draining snow and ice. Based upon stream temperature patterns, it appears possible to differentiate between river flow conditions including: free‐flowing, surface freezing, dewatering and snow cover. Notably, groundwater‐fed streams appeared to exhibit greater flow permanency than meltwater‐fed streams, the latter freezing for extended periods. These new insights into long‐term alpine stream thermal conditions have major implications for understanding the strategies adopted by benthic macroinvertebrate taxa when overwintering, particularly where streams freeze. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Unforeseen interactions of dams and declining water availability have formed new obstacles to recovering endemic and endangered big‐river fishes. During a recent trend of drying climate and declining reservoir water levels in the Southwestern United States, a large waterfall has formed on two separate occasions (1989–1995 and 2001–present) in the transition zone between the San Juan River and Lake Powell reservoir because of deposited sediments. Since recovery plans for two large‐bodied endangered fish species, razorback sucker (Xyrauchen texanus) and Colorado pikeminnow (Ptychocheilus lucius), include annual stockings in the San Juan River, this waterfall potentially blocks upstream movement of individuals that moved downstream from the river into the reservoir. To quantify the temporal variation in abundance of endangered fishes aggregating downstream of the waterfall and determine population demographics, we remotely monitored and sampled in spring 2015, 2016, and 2017 when these fish were thought to move upstream to spawn. Additionally, we used an open population model applied to tagged fish detected in 2017 to estimate population sizes. Colorado pikeminnow were so infrequently encountered (<30 individuals) that population estimates were not performed. Razorback sucker captures from sampling (335), and detections from remote monitoring (943) showed high abundance across all 3 years. The razorback sucker population estimate for 2017 alone was 755 individuals and, relative to recent population estimates ranging from ~2,000 to ~4,000 individuals, suggests that a substantial population exists seasonally downstream of this barrier. Barriers to fish movement in rivers above reservoirs are not unique; thus, the formation of this waterfall exemplifies how water development and hydrology can interact to cause unforeseen changes to a riverscape.  相似文献   

17.
River2D was used to develop a hydraulic model of an upstream passage impediment for adult spring‐run Chinook salmon (Oncorhynchus tshawytscha) on Butte Creek, Tehama County, California. Topographic data were collected by using a total station, survey‐grade real‐time kinematic global positioning system, and terrestrial light detection and ranging. Stage‐discharge relationships were developed at the upstream and downstream ends of the site to use as boundary conditions and to calibrate the 2D model. A pressure transducer was installed at the downstream boundary of the site to provide a time series of flow and water temperatures. Parameters of the hydraulic model were examined to assess upstream passage including minimum thalweg depth along the least width‐limiting pathway, velocity, and water surface elevation above and below a jump, and flow partitioning between a split in the main flow paths through the site. The results of the River2D model were used to identify flow levels that met the minimum depth and width thresholds needed for adult spring‐run Chinook salmon (SRCS) to migrate upstream through the study reach. A minimum passage depth criterion of 0.27 m was used for adult SRCS. Site‐specific passage width criteria were derived from the literature for the study site and ranged from 0.3 to 0.9 m. Model results indicated that a flow of 3.40 cms met the depth criterion and the lower bound of the width criterion. A flow level of 6.8 cms met the depth criterion and the upper bound of the width criterion. Data from the VAKI Riverwatcher fish passage counting device installed just upstream of the study site were related to the stage/passage limiting width and water temperature monitoring data. The monitoring data and results of the predictive modelling will be used by the California Department of Fish and Wildlife to recommend flow criteria that protect migrating adult SRCS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Reproductive success of stream‐spawning Oncorhynchus fishes (Pacific salmon, rainbow trout, cutthroat trout and their allies) may be greatly affected by stream discharge or its covariate, stream temperature, during the spawning season. Because such data for the physical environment may not have been routinely collected as part of previous investigations of these fishes, identification of simple but robust indices of historic, seasonal stream discharge and temperature, using long‐term climate data sets, would be important, especially to investigations of historic population dynamics. This study examined statistical associations among several climate variables and the spawning‐season (approximately June) discharges and temperatures of Clear Creek, a Yellowstone Lake tributary used by spawning Yellowstone cutthroat trout, Oncorhynchus clarkii bouvieri (YCT), from the lake. Correlation analysis showed that total water‐year degree‐days (calculated on the basis of mean daily air temperature > 0°C) at Lake Village, on the lake's north shore, was a robust index (both negative and positive, respectively) of consecutive, total semi‐month metrics of creek discharge and temperature during the YCT spawning season. This study (and subsequent use of the Lake Village degree days metric as an environmental variable in a dynamic, age‐structured model of the lacustrine–adfluvial YCT population of Clear Creek) showed how exploratory analyses of the fragmentary but long‐term and regionally unique data sets for Clear Creek discharge and temperature revealed a simple but robust index of climate variation important to understanding the historic dynamics of Clear Creek's YCT population, which is a key spawning stock of Yellowstone Lake. In addition, the extensive statistical associations among the climate variables, along with the temporal trends in two key variables, broadly showed how climate varied across the Yellowstone Lake region during the past several decades. Those observations have implications for the historic, seasonal hydrology of all Yellowstone Lake tributaries used by spawning YCT. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Repeat salmonid spawners may make large contributions to total recruitment and long term population stability. Despite their potential importance, relatively little is known about this phase of the life history for anadromous populations, and nothing has been reported for landlocked populations. Here, we studied post‐spawning behaviour and survival of landlocked Atlantic salmon in relation to downstream dam passage in the River Klarälven, Sweden. Eight hydropower stations separate the feeding grounds in Lake Vänern from the spawning grounds in the River Klarälven, and no measures to facilitate downstream migration are present in the river. Forty‐nine percent of the salmon survived spawning and initiated downstream migration. Females and small fish had higher post‐spawning survival than males and large fish. The post‐spawners migrated downstream in autumn and spring and remained relatively inactive in the river during winter. Downstream migration speed in the free flowing part of the river was highly variable with a median of 9.30 km/day. Most fish passed the first hydropower station via upward‐opening spill gates after a median residence time in the forebay of 25 min. However, no tagged fish survived passage of all eight hydropower stations to reach Lake Vänern. This result underscores the need for remedial measures to increase the survival of downstream migrating kelts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A river's flow regime creates and maintains spatial variability in habitat and dictates the distribution and abundance of riverine fishes. Changes to patterns of natural hydrologic variation and disturbance create novel flow conditions and may influence distribution of native fishes. We examined local and regional‐scale factors that influenced the presence of pallid sturgeon Scaphirhynchus albus in the Platte River, a large tributary to the Missouri River in Nebraska, USA. Daily river discharge, diel flow variability, season and location in the study area were the most supported variables in logistic regression models explaining pallid sturgeon distribution. The probability of pallid sturgeon occurrence was greatest during periods of high discharge (>90th percentile flows) in the spring and fall. Pallid sturgeon occurrence was always lower when variability in diel flow patterns was high (i.e. hydropeaking). Our results indicate that pallid sturgeon use of the lower Platte River was strongly tied to the flow regime. Therefore, the lower Platte River may provide an opportunity to preserve and restore sturgeon and possibly other large‐river fishes through appropriate water management strategies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号