首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
目的 研究后方韧带复合体逐级切除对损伤胸腰椎稳定性的影响,验证棘上韧带对维持损伤胸腰椎稳定的作用。方法 取8具健康新鲜人体T11~L3节段标本,于L1椎体中1/3行楔形切除,并在材料试验机上压缩至闭合以制备L1椎体骨折。对T12~L1处后方韧带复合体按照关节囊、棘间韧带、棘上韧带、黄韧带的顺序进行逐级切除,依次连续测量T12~L1节段前屈、后伸、侧弯、旋转运动时的运动范围(range of motion, ROM)及中性区(neutral zone, NZ)变化。结果 在前屈和后伸运动中,椎体切除及棘上韧带断裂后,ROM及NZ显著增加。在侧弯运动中,椎体切除和关节囊破坏后,ROM显著增加。在旋转活动中,椎体切除及关节囊破坏导致ROM增加,NZ无显著增加。结论 棘上韧带断裂后,T12~L1节段稳定性发生显著下降,尤其在前屈运动中。棘上韧带是维持胸腰椎节段稳定性的关键韧带。  相似文献   

2.
目的 研究后方韧带复合体逐级切除对损伤胸腰椎稳定性的影响,验证棘上韧带对维持损伤胸腰椎稳定的作用。方法 取8具健康新鲜人体T11~L3节段标本,于L1椎体中1/3行楔形切除,并在材料试验机上压缩至闭合以制备L1椎体骨折。对T12~L1处后方韧带复合体按照关节囊、棘间韧带、棘上韧带、黄韧带的顺序进行逐级切除,依次连续测量T12~L1节段前屈、后伸、侧弯、旋转运动时的运动范围(range of motion, ROM)及中性区(neutral zone, NZ)变化。结果 在前屈和后伸运动中,椎体切除及棘上韧带断裂后,ROM及NZ显著增加。在侧弯运动中,椎体切除和关节囊破坏后,ROM显著增加。在旋转活动中,椎体切除及关节囊破坏导致ROM增加,NZ无显著增加。结论 棘上韧带断裂后,T12~L1节段稳定性发生显著下降,尤其在前屈运动中。棘上韧带是维持胸腰椎节段稳定性的关键韧带。  相似文献   

3.
背景:韧带是稳定腰椎的重要结构,随着年龄的增长韧带容易发生退行性变化,目前关于腰椎韧带的研究较少。目的:探究在一定的韧带损伤顺序下,前屈、后伸、侧弯、扭转4种运动状态时,不同韧带叠加损伤的组合对腰椎生物力学特性的影响。方法:建立L4-L5节段腰椎有限元模型,施加相应的力矩模拟前屈、后伸、侧弯、扭转4种运动状态,按顺序进行韧带的组合损伤,得到腰椎的活动度及各个韧带的应力。结果与结论:(1)每去除一根韧带,剩余韧带应力会增加,4种工况下都是关节囊韧带所受应力最大,尤其是前屈时;随着韧带的去除,腰椎活动度也在不断增加;(2)前屈时,去除第一根韧带关节囊韧带后,剩余韧带应力变化平均值最大,其次是去除棘上韧带后;去除关节囊韧带后,腰椎活动度变化率最大,去除后纵韧带后,腰椎活动度变化率最小;(3)后伸时,所有韧带都是在去除关节囊韧带后应力变化率最大,去除关节囊韧带后,腰椎活动度变化率最大,去除后纵韧带后,腰椎活动度变化率最小;(4)侧弯时,棘间韧带的应力变化率在去除横突韧带后减小,棘上韧带此时增加较多,去除关节囊韧带和去除横突韧带后,活动度变化率有较大的...  相似文献   

4.
目的研究腰椎微创经椎间孔椎体间融合术(MI-TLIF)不对称内固定条件下节段稳定性和椎体前柱应变分布特点。方法采用新鲜小牛腰椎标本8例,完成L4~L5节段完整状态测试后建立TLIF手术损伤模型,分别测试右侧椎弓根螺钉固定(UPS)、右侧椎弓根螺钉加对侧经关节突椎弓根螺钉(UPS+TFPS)固定、双侧椎弓根螺钉固定(BPS)状态的三维运动范围(ROM),同时在L4椎体前柱表面用电阻应变片技术测量在前屈和侧弯运动中电阻应变数据。结果 UPS+TFPS和BPS固定状态的稳定性效果接近,UPS固定抗旋转稳定性不足。UPS+TFPS固定后椎体前柱应变在前屈和侧弯运动下较BPS固定分别增加21.8%和24.2%。结论 UPS+TFPS固定提供有效稳定的同时可以实现更好的椎体-内植物载荷共享。  相似文献   

5.
目的探讨动态固定(转动钉、滑动钉)对寰枢关节稳定性的影响。方法用6具新鲜成人枕骨(Oc)~颈椎(C4)节段进行测试,分别模拟完整状态、损伤状态、坚强固定、转动钉固定、滑动钉固定。采用重复测量的实验设计,在完整、损伤和不同固定状态下,通过脊柱试验机对标本分别施加1.5 N·m前屈/后伸、左/右侧弯和左/右轴向旋转纯力偶矩。三维运动系统测量寰枢椎运动,分析比较固定节段角度的运动范围(range of motion,ROM)和中性区(neutral zone,NZ)。结果损伤状态下,寰枢关节ROM在前屈、后伸、侧弯和旋转方向上均显著增加,产生了寰枢关节不稳。在前屈、后伸、侧弯和旋转方向上,坚强固定和动态固定后ROM均显著减小。与坚强固定比较,动态固定仅在侧弯方向上ROM较大。动态固定显著减小了在屈伸、侧弯和旋转方向上的NZ,且与坚强固定之间的差异无显著性。结论寰枢关节动态固定后,在前屈、后伸和旋转方向上的稳定性与坚强固定相当,但在侧弯方向上较弱。动态固定能够维持寰枢关节的相对稳定。  相似文献   

6.
目的:用生物力学实验方式评价胸腰段脊柱椎管前方减压植骨+Kaneda内固定术中前、后纵韧带切除对其稳定性的影响。方法:采用7具新鲜小牛胸腰段脊柱标本,模拟临床手术行L1椎体切除椎管前方减压自体髂骨植骨+Kaneda内固定术,在WE-10A万能材料实验机上进行非破坏性生物力学测试。结果:在该术式中切除病变节段前纵韧带后胸腰椎的稳定性在旋转、轴压、前屈、后伸、侧弯各运动状态下有下降趋势,其中以后伸时最为明显,差异有统计学意义(P〈0.05)。继续切除该节段后纵韧带,胸腰椎在屈伸、侧弯和旋转运动状态下稳定性下降显著,差异有统计学意义(P〈0.05)。结论:在胸腰段脊柱椎管前方减压、植骨+Kaneda内固定术中局部切除前纵韧带将降低内固定后脊柱在后伸状态的即刻稳定性;前、后纵韧带均切除将明显降低Kaneda器械的固定效果。  相似文献   

7.
目的建立人体下颈椎C3~7节段前路椎体次全切除钛网植骨融合术的三维有限元模型,分析术后椎体稳定性及内固定器械的应力分布。方法建立前路椎体C5节段次全切除钛网植骨钢板螺钉内固定颈椎C3~7节段有限元模型,同时建立C3~7节段下颈椎原始模型。对术后模型分别施加0.5、1.0、1.5、2.0 N·m扭矩,分析前屈、后伸、侧弯及轴向旋转时关节活动度(range of motion,ROM)、关节突关节最大应力与内固定器械整体应力分布情况。结果前路椎体次全切除减压融合术(cervical corpectomy and fusion,ACCF)后,C5重建节段ROM随扭矩的增大而增加,与无损模型在1.0 N·m、预载荷50 N工况下相比,C5重建节段、C3~4,C6~7和C3~7节段ROM分别下降81%、62%、58%和80%;C5重建节段后方关节突关节最大应力减小,临近节段关节突关节应力显著升高;钛网应力主要分布于运动受压侧,螺钉根部承受较大载荷。结论 ACCF术式会较大提升颈椎稳定性,降低手术节段后方关节突关节应力,对于减缓因脊髓型颈椎病引起的脊髓压迫有较好疗效。研究结果可为ACCF手术的临床应用研究提供理论依据。  相似文献   

8.
目的 通过生物力学研究方法比较短节段固定对胸腰椎二柱(前中柱)损伤和三柱损伤的固定稳定性。 方法 选取8具新鲜家猪T13~L5节段的脊柱标本。实验标本需进行4种状态下的测试:正常状态(A);二柱损伤状态(B);二柱损伤短节段固定状态(C);三柱损伤短节段固定状态(D)。标本先采用自由落锤方法制成L2椎体的二柱(前中柱)损伤不稳模型;再在二柱损伤基础上破坏棘间,棘上韧带,黄韧带和小关节制备成严重不稳的三柱损伤模型固定。测试每种状态下的L1~3的活动度(ROM)和压缩刚度(Compressive Stiffness)并进行统计分析。 结果 在后伸,侧屈及旋转方向上三柱损伤组的ROM值均显著高于二柱损伤固定组(P<0.05)。两柱损伤组在屈伸,侧屈,旋转方向的ROM均大于正常组(P<0.05)。两柱损伤固定组与两柱损伤组相比在各方向上ROM显著减少(P<0.05)。三柱损伤固定组和正常组相比前屈ROM(P=0.002)、侧屈ROM(P=0.001)显著增高。三柱损伤固定组压缩刚度显著低于两柱损伤固定组 (P<0.05)。三柱损伤固定组压缩刚度显著低于正常组(P<0.05)。 结论 胸腰椎两柱损伤采用短节段固定能获得足够的稳定性,而三柱损伤采用短节段固定术后即刻稳定性和垂直抗压强度均明显较差。  相似文献   

9.
目的探讨腰椎间盘不对称切除对小关节压力及腰椎稳定性的影响。方法采用7具人体脊柱标本(L2~3),制备完整椎间盘组、1/4椎间盘切除组、1/2椎间盘切除组,对标本施加7.5 N·m的屈伸、侧弯和轴向旋转方向的纯力偶矩,记录腰椎运动范围(range of motion,ROM)和小关节压力。结果后伸方向,1/4椎间盘切除状态下非切除侧小关节压力显著性增大;侧弯方向,1/2椎间盘切除状态下的两侧小关节压力均有显著性增大;轴向旋转方向,1/2椎间盘切除状态下仅切除侧小关节压力显著性增大。1/4椎间盘切除、1/2椎间盘切除状态下的ROM均大于完整椎间盘,但前屈方向各组间ROM无差别,各组间侧弯和轴向旋转的ROM在左、右侧无差别。结论腰椎间盘不对称切除导致腰椎除前屈方向外稳定性下降和小关节压力不对称性增大,提示腰椎间盘不对称退变引起腰椎不稳和小关节压力增大可产生腰痛。  相似文献   

10.
目的 应用新鲜人体标本,对新型腰椎后路动态内固定进行体外生物力学试验,进一步明确动态内固定对受试节段及邻近节段的活动度影响,最终为临床应用动态内固定治疗腰椎退行性疾病提供参考提供.方法 选用6具腰椎尸体标本,固定于脊柱生物力学试验机上,测试的状态依次为完整腰椎状态、失稳腰椎状态、动态内固定状态及坚强内固定状态,分别在前(后)屈、左(右)侧弯和左(右)旋转3个运动平面上施加7.5 N·m的力矩,计算并比较腰3-腰4、腰4-腰5、腰5-骶1之间3个运动平面的脊柱运动范围(range of motion,ROM)及中性区(neutral zone,NZ).结果 在所有的3个运动平面上(侧弯、屈/伸、轴向旋转),与完整腰椎状态对比,失稳腰椎状态增加了ROM和NZ(P<0.05).坚强内固定和动态内固定状态均使侧弯和屈曲ROM和NZ较正常腰椎减少1个数量级(P<0.05),屈/伸时,坚强内固定组ROM和NZ明显减小(P<0.05),动态固定组的ROM和NZ较完整腰椎状态无明显改变(P>0.05).轴向左右旋转时,坚强内固定状态ROM和NZ明显减小,动态内固定状态ROM则较正常腰椎状态有所增大,但差异无统计学意义(P>0.05).腰3-腰4及腰5-骶1邻近节段的3个运动平面上(侧弯、屈/伸、轴向旋转)的ROM和NZ均未明显受到固定节段的影响(P>0.05).结论 相对坚强内固定,动态内固定能够稳定失稳的脊柱节段,允许更多的节段活动,可考虑将动态内固定作为坚强内固定的替代治疗方法.  相似文献   

11.
In this paper, we report on the development of a three-dimensional model of human lower lumbar spine based on actual geometry of L4-L5 motion segment. The simulation is performed on the model extracted from 2 mm slices of CT-Scan data of a healthy subject. The finite element model includes different parts, such as, cortical shell, cancellous core, endplates, pedicle, lamina, transverse process, and spinous process. Additionally, it takes into account the intervertebral disc including the nucleus pulposus and annulus fibrosus. The seven ligamentous structures of the L4-L5 motion segment, such as, anterior longitudinal ligament, posterior longitudinal ligament, and supraspinous ligament, were also incorporated. Various biomechanical characteristics of the computer generated model are studied under different physiological loadings. The focus of this study is on the role of posterior elements on load sharing of the lower lumbar region. The simulation yields data on the stress distribution inside the vertebrae and the amount of resulting deformation that takes place. Different simulated models of an injured lumbar spine are also being analyzed for two cases of facetectomy and degraded nucleus disorders. It is shown that the inclusion of the posterior elements along with the ligamentous tissues lead to an increase in the stiffness and stability of the L4-L5 motion segment.  相似文献   

12.
前屈型压缩性损伤对腰椎稳定性的影响   总被引:1,自引:0,他引:1  
测试前屈压缩损伤对腰椎节段运动稳定性的影响。在7具成人新鲜尸体标本上,截取T12至L1的脊柱标本,通过脊柱三维运动试验机和双平面立体测量术的计算机图象处理系统,分析了前屈型压缩破坏前后,该节段标本在前屈,后伸,左/右侧弯和左/右旋转状态下的运动范围。  相似文献   

13.
文题释义:腰椎牵引:是指令患者平卧于治疗床上,使用束带将患者前臂固定,达到医者固定患者双臂的目的;波浪式滚动气柱以腰背部为作用点进行顶推,控制多层气柱叠加高度使受试者腰部逐渐过伸牵引脊柱关节,实现对软组织的牵伸,并结合自身重力过伸牵引脊柱关节,能够增大椎间隙及调整椎小关节,最终达到理筋整复的作用。 三维有限元分析:是指在获取腰椎的CT图像数据,并导入到Mimics等软件当中建立的有限元模型基础上,将L3的发生的位移变化带入MSC.Nastam软件中,高度仿真模拟人体在不同生理曲度下,计算分析出全腰椎各节段椎体、椎间关节、椎间盘、前纵韧带的应力值及分布情况的变化。 背景:近年来利用有限元分析方法研究腰椎生物力学成为热点,研究认为腰椎生理性前凸可减少腰椎间盘压力负荷,而对腰椎起保护效应。 目的:研究腰椎在正常生理曲度、屈曲位及最大过伸位下进行腰椎牵引时对L1-L5腰椎各节段的生物力学效应,并评估腰椎牵引的最佳生理曲度。 方法:选取1名健康男性志愿者,26岁,身高174 cm,体质量60 kg,既往体健,排除腰椎骨骼异常疾病。以受试者L3为作用点徒手操作南少林倒盖金被法,利用DR机分别获得受试者腰椎起始位和最大过伸位的腰椎侧位片,构建全腰椎有限元模型。计算腰椎不同生理曲度下全腰椎各节段椎体、椎间关节、椎间盘、前纵韧带的应力值及分布情况的变化。研究方案的实施符合福建中医药大学附属康复医院相关伦理要求,受试者对试验过程完全知情同意。 结果与结论:①模拟腰椎前屈、后伸,左右侧弯,左右旋转6种工况活动度:L1-L2的前屈与后伸活动度之和为9.31°,左右侧弯9.84°,左右旋转4.43°;L2-L3:前屈与后伸10.22°,左右侧弯12.35°,左右旋转4.57°;L3-L4的前屈与后伸的活动度之和为11.20°,左右侧弯11.63°,左右旋转5.32°;L4-L5前屈与后伸活动度之和13.16°,左右侧弯11.58°,左右旋转5.05°;②在正常生理曲度牵引腰椎时,腰椎各个结构的应力值远大于过伸位牵引的应力值;前纵韧带应力值正常曲度是2.47 MPa,过伸位是21.20 MPa;L3的椎体应力值达到最大,是过伸位牵引应力值的4倍;L2-L3的椎间关节及椎间盘的应力值在腰椎各个节段是最大的;③结果说明,腰椎在过伸位较正常生理曲度牵引下椎体、椎间关节、椎间盘的压力减轻更大,而且前纵韧带的压力值始终在安全范围内。腰椎在过伸位牵引时可能获得更好的临床疗效,同时具备一定的安全性。 ORCID: 0000-0002-4468-1464(李民) 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程  相似文献   

14.
[摘要]目的设计一种新型经椎弓根螺钉动力内固定系统,并测试其对失稳腰椎的稳定性效果及对相邻节段的作用。方法 1采用6具人新鲜尸体腰椎标本,测试各个节段的活动度,为新型动力内固定系统的设计提供参数支持。2以钛合金棒、钛缆和钛合金碟片弹簧为主要结构,根据正常腰椎各节段的活动度,参照文献报道的相关测试结果,设定动态连接棒屈曲范围0~10°,旋转范围0~5°,并对其进行了相关力学测试。3制作腰椎失稳模型,测试新型动力内固定系统固定后失稳腰椎固定节段及相邻节段的运动范围(ROM)和中性区(NZ),并与坚强固定对比,同时测定其上邻节段软骨终板下压力,探讨其稳定性及对相邻节段的作用。结果 与完整脊柱相比,新型动力内固定系统固定后屈伸和侧屈方向的ROM和NZ较完整脊柱减小(P<0.05),但旋转方向的ROM和NZ与完整脊柱无显著性差异(P>0.05)。与坚强固定组相比,新型动力内固定组三个主方向的ROM和NZ均显著增加,差异有显著性意义(P<0.01)。疲劳试验后的结果表明,固定节段在三个主方向上的ROM和NZ均较疲劳前显著增加(P <0.05),但与失稳脊柱相比,差异仍具有显著性意义,与完整脊柱相比,动力内固定屈伸方向的ROM和NZ仍较小,两组相比差异显著(P <0.05),侧屈与旋转方向的ROM和NZ与完整脊柱无显著性差异(P >0.05)。结论 新型动力内固定系统可控性强、可靠性好、能够提供足够的活动度。新型动力内固定系统能对失稳腰椎提供各方向上的稳定性,尤其对前屈后伸的稳定效果最好,疲劳试验后也能提供足够的稳定性。相邻节段的ROM和上邻节段终板下压力与固定方式无显著相关。  相似文献   

15.
腰椎后部韧带结构生物力学实验研究与临床意义   总被引:4,自引:0,他引:4  
目的;通过生物力学测定了解腰椎后部韧带结构对腰椎稳定性的影响。方法:本文采用5具正常青年人新鲜腰椎标本,去除肌肉,保留韧带,经逐步处理分为三组,A组:正常组;B组;切除棘上韧带组;C组;切除棘上,棘间韧带组。以生物力学方法研究后部韧带结构切除后腰椎稳定性的变化。  相似文献   

16.
Eight fresh porcine lumbar spines received a posterior instrumentation at L4-L5 using pedicle screw-rod system. Each specimen was tested utilizing laminectomies of varying extent. Group A (Integrity) preserved the spinous process and interspinous ligament; Group B (Partial laminectomy) removed the inferior portion of L4 spinous process and preserved the interspinous ligament of L3-L4; Group C (Complete laminectomy) removed the entire L4 spinous process. Hydraulic testing machine was used to generate an increasing moment up to 8400 N mm in flexion and extension. The intervertebral displacement on the superior adjacent disc between L3-L4 was measured using an extensometer. Under extension, no significant difference in the intervertebral displacement was observed among three different models of laminectomy. However, under flexion, the intervertebral displacement on adjacent disc with complete laminectomy was statistically larger than those of integrity and partial laminectomies (P=0.000976 and P=0.0363, respectively). No difference was found between integrity and partial laminectomy groups (P>0.05). This study implies that an instrumented spine with integrity of posterior complex is less likely to develop adjacent instability than a spine with destruction of the anchoring point for supraspinous ligament.  相似文献   

17.
目的:建立胸腰椎(T11-L2节段)的三维有限元模型,并验证其生物力学分析有效性。方法:筛选1名T12椎体骨质疏松性压缩骨折的志愿者为建模对象,利用64排螺旋CT进行连续性扫描,扫描区域为脊柱胸腰段T11-L2节段。将CT数据读盘为DICOM格式,导入Mimics 19.0软件进行原始模型的提取与转化;Geomagic Warp 2017软件进行特征去除、光顺、曲面实体拟合;Solidworks 2017软件进行零件结构的组装与附属结构生成;Ansys Workbench 17.0软件添加材料属性、边界条件、坐标及载荷设定及生物力学分析。结果:成功建立了T12椎体压缩骨折T11-L2节段的经皮椎体后凸成形术(PKP)术后三维有限元模型,并测得其前屈、后伸、左侧弯、右侧弯、左旋转、右旋转时的角位移分别为8.3°、3.8°、7.8°、7.6°、3.7°、4.0°,与以往力学实验验证结果位移趋势一致。结论:基于有限元建模软件能成功建立骨质疏松性椎体压缩骨折PKP术后有限元数字模型,有效性验证合格,所建模型可靠,具备生物力学测试性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号