首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
《The Journal of cell biology》1996,134(6):1375-1386
Hsp78, a member of the family of Clp/Hsp100 proteins, exerts chaperone functions in mitochondria of S. cerevisiae which overlap with those of mitochondrial Hsp70. In the present study, the role of Hsp78 under extreme stress was analyzed. Whereas deletion of HSP78 does not affect cell growth at temperatures up to 39 decrees C and cellular thermotolerance at 50 degrees C, Hsp78 is crucial for maintenance of respiratory competence and for mitochondrial genome integrity under severe temperature stress (mitochondrial thermotolerance). Mitochondrial protein synthesis is identified as a thermosensitive process. Reactivation of mitochondrial protein synthesis after heat stress depends on the presence of Hsp78, though Hsp78 does not confer protection against heat-inactivation to this process. Hsp78 appears to act in concert with other mitochondrial chaperone proteins since a conditioning pretreatment of the cells to induce the cellular heat shock response is required to maintain mitochondrial functions under severe temperature stress. When expressed in the cytosol, Hsp78 can substitute for the homologous heat shock protein Hsp104 in mediating cellular thermotolerance, suggesting a conserved mode of action of the two proteins. Thus, proteins of the Clp/Hsp100-family located in the cytosol and within mitochondria confer compartment-specific protection against heat damage to the cell.  相似文献   

3.
4.
The heat shock protein Hsp104 of the yeast Saccharomyces cerevisiae plays a key role in promoting survival at extreme temperatures. We found that when diverse higher plant species are exposed to high temperatures they accumulate proteins that are antigenically related to Hsp104. We isolated a cDNA corresponding to one of these proteins from Arabidopsis. The protein, AtHSP101, is 43% identical to yeast Hsp104. DNA gel blot analysis indicated that AtHSP101 is encoded by a single- or low-copy number gene. AtHsp101 mRNA was undetectable in the absence of stress but accumulated to high levels during exposure to high temperatures. When AtHSP101 was expressed in yeast, it complemented the thermotolerance defect caused by a deletion of the HSP104 gene. The ability of AtHSP101 to protect yeast from severe heat stress strongly suggests that this HSP plays an important role in thermotolerance in higher plants.  相似文献   

5.
细菌ClpX蛋白酶的结构和功能   总被引:1,自引:0,他引:1  
王琳  谢建平 《微生物学报》2010,50(10):1281-1287
ClpX是热休克蛋白Hsp100蛋白家族的成员之一,在生物体中非常保守。Hsp100/Clp分子伴侣家族功能主要涉及到细胞对环境的压力耐受、胞内蛋白质的周转、DNA复制和基因表达等。结核分枝杆菌所导致的结核病仍然是全球人类健康的主要威胁。致病菌中的ClpX蛋白酶在基因的表达调控、致病性以及宿主免疫压力耐受中都具有非常重要的功能。本文总结了ClpX蛋白酶的结构、底物以及所调控的基因;分析了结核分枝杆菌ClpX蛋白酶的进化特征,并探讨了结核分枝杆菌ClpX蛋白酶可能的生理功能和在致病性中的重要作用。  相似文献   

6.
7.
8.
Referee: Dr. Peter Csermely, Department of Medical Chemistry, Semmeliweis Univ. School of Medicine, P.O. Box 260, H-1444 Budapest 8, Hungary Hsp100/Clp family of proteins is ubiquitously distributed in living systems. Detailed work carried out in bacterial and yeast cells has shown that regulatory members of the Clp family (mainly ClpA, ClpB, and ClpC), together with the catalytic subunit (mainly ClpP), comprise an ATP-dependent two-component proteolytic system. Members of the Hsp100/Clp protein family are not only involved in the regulation of energy-dependent protein hydrolysis but also function as molecular chaperones. However, the biochemical/physiological role(s) of the Hsp100/Clp protein family in higher plants has yet to be elucidated. Recently, this protein family has been implicated in plant stress responses: the hot1 mutant of Arabidopsis thaliana, which has mutation in hsp101 gene, and is defective in tolerance to high temperature (S.-W. Hong and E. Vierling, 2000, Proc Natl Acad Sci USA, 97 (8), 4392-4397) and the transgenic Arabidopsis thaliana plants overexpressing AtHsp101 gene exhibit high temperature tolerance (C. Quietsch et al., 2000, Plant Cell, 12, 479–492). Furthermore, the Hsp101 protein is involved in the translational regulation of cellular mRNAs and one such candidate has been identified as the photosynthetic electron transport gene Ferredoxin 1 mRNA (J. Ling et al., 2000, Plant Cell, 12, 1213–1227). We present what is known about the bacterial, yeast, and plant Hsp100/Clp proteins, discuss their possible relationship, and, more importantly, examine the cellular roles that this important family of proteins plays in plants.  相似文献   

9.
The Saccharomyces cerevisiae protein Hsp104, a member of the Hsp100/Clp AAA+ family of ATPases, and its orthologues in plants (Hsp101) and bacteria (ClpB) function to disaggregate and refold thermally denatured proteins following heat shock and play important roles in thermotolerance. The primary sequences of fungal Hsp104's contain a largely acidic C-terminal extension not present in bacterial ClpB's. In this work, deletion mutants were used to determine the role this extension plays in Hsp104 structure and function. Elimination of the C-terminal tetrapeptide DDLD diminishes binding of the tetratricopeptide repeat domain cochaperone Cpr7 but is dispensable for Hsp104-mediated thermotolerance. The acidic region of the extension is also dispensable for thermotolerance and for the stimulation of Hsp104 ATPase activity by poly-l-lysine, but its truncation results in an oligomerization defect and reduced ATPase activity in vitro. Finally, sequence alignments reveal that the C-terminal extension contains a sequence (VLPNH) that is conserved in fungal Hsp104's but not in other orthologues. Hsp104 lacking the entire C-terminal extension including the VLPNH region does not assemble and has very low ATPase activity. In the presence of a molecular crowding agent the ATPase activities of mutants with longer truncations are partially restored possibly through enhanced oligomer formation. However, elimination of the whole C-terminal extension results in an Hsp104 molecule which is unable to assemble and becomes aggregation prone at high temperature, highlighting a novel structural role for this region.  相似文献   

10.
We have cloned two cDNAs, TaHSP101B and TaHSP101C, encoding two heat stress-inducible members of HSP101/ClpB family in bread wheat (Triticum aestivum (L.) Moench.). Proteins encoded by these cDNAs are highly similar at the primary sequence level and diverged from the previously reported TaHSP101 (designated TaHSP101A) both in the consensus ATP/GTP-binding region II and in the carboxy terminal region. The HSP101 gene was determined to be a single copy gene or a member of a small gene family in hexaploid wheat. Messages encoding HSP101 proteins were inducible by heat stress treatments in both wheat leaves and roots. Accumulation of the TaHSP101C mRNA was less abundant than that of TaHSP101B mRNA. We are showing for the first time that in addition to heat stress, expression of HSP101 mRNAs in wheat leaves was induced by a 2-h dehydration and a treatment with 5x10(-5)M ABA, but not affected by chilling or wounding, indicating that HSP101 proteins may be involved in both heat and drought responses in wheat.  相似文献   

11.
clpP and clpC of Bacillus subtilis encode subunits of the Clp ATP-dependent protease and are required for stress survival, including growth at high temperature. They play essential roles in stationary phase adaptive responses such as the competence and sporulation developmental pathways, and belong to the so-called class III group of heat shock genes, whose mode of regulation is unknown and whose expression is induced by heat shock or general stress conditions. The product of ctsR , the first gene of the clpC operon, has now been shown to act as a repressor of both clpP and clpC , as well as clpE , which encodes a novel member of the Hsp100 Clp ATPase family. The CtsR protein was purified and shown to bind specifically to the promoter regions of all three clp genes. Random mutagenesis, DNaseI footprinting and DNA sequence deletions and comparisons were used to define a consensus CtsR recognition sequence as a directly repeated heptad upstream from the three clp genes. This target sequence was also found upstream from clp and other heat shock genes of several Gram-positive bacteria, including Listeria monocytogenes , Streptococcus salivarius , S. pneumoniae , S. pyogenes , S. thermophilus , Enterococcus faecalis , Staphylococcus aureus , Leuconostoc oenos , Lactobacillus sake , Lactococcus lactis and Clostridium acetobutylicum . CtsR homologues were also identified in several of these bacteria, indicating that heat shock regulation by CtsR is highly conserved in Gram-positive bacteria.  相似文献   

12.
13.
The Clp/Hsp100 AAA+ chaperone family is involved in recovering aggregated proteins and little is known about other orthologs of the well studied ClpB from Escherichia coli and Hsp104 from Saccharomyces cerevisiae. Plant Hsp101 is a good model for understanding the relationship between the structure and function of Hsp100 proteins and to investigate the role of these chaperones in disaggregation processes. Here, we present the cloning and purification of a sugarcane ortholog, SHsp101, which is expressed in sugarcane cells and is a folded hexamer that is capable of binding nucleotides. Thus SHsp101 has the structural and functional characteristics of the Clp/Hsp100 AAA+ family.  相似文献   

14.
The molecular chaperone protein Hsp78, a member of the Clp/Hsp100 family localized in the mitochondria of Saccharomyces cerevisiae, is required for maintenance of mitochondrial functions under heat stress. To characterize the biochemical mechanisms of Hsp78 function, Hsp78 was purified to homogeneity and its role in the reactivation of chemically and heat-denatured substrate protein was analyzed in vitro. Hsp78 alone was not able to mediate reactivation of firefly luciferase. Rather, efficient refolding was dependent on the simultaneous presence of Hsp78 and the mitochondrial Hsp70 machinery, composed of Ssc1p/Mdj1p/Mge1p. Bacterial DnaK/DnaJ/GrpE, which cooperates with the Hsp78 homolog, ClpB in Escherichia coli, could not substitute for the mitochondrial Hsp70 system. However, efficient Hsp78-dependent refolding of luciferase was observed if DnaK was replaced by Ssc1p in these experiments, suggesting a specific functional interaction of both chaperone proteins. These findings establish the cooperation of Hsp78 with the Hsp70 machinery in the refolding of heat-inactivated proteins and demonstrate a conserved mode of action of ClpB homologs.  相似文献   

15.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.  相似文献   

16.
Sequence and Expression of a HSP83 from Arabidopsis thaliana   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

17.
The small heat shock proteins (sHSPs) are a highly conserved family of molecular chaperones that are ubiquitously expressed throughout nature. They are transiently upregulated in many tissue types following stressful stimuli. Recently, one member of the sHSP family, HSP20 (HspB6), has been shown to be highly effective as a protective mediator against a number of debilitating pathological conditions, including cardiac hypertrophy and Alzheimer's disease. Hsp20 is also an important modulator of vital physiological processes, such as smooth muscle relaxation and cardiac contractility. This review focuses on the molecular mechanisms employed by HSP20 that allow it to act as an innate protector in the context of cardiovascular and neurological diseases. Emerging evidence for a possible role as an anti-cancer agent is also presented.  相似文献   

18.
19.
Human neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” Upregulation of heat shock proteins that target misfolded aggregation-prone proteins has been proposed as a potential therapeutic strategy to counter neurodegenerative disorders. The heat shock protein 70 (HSP70) family is well characterized for its cytoprotective effects against cell death and has been implicated in neuroprotection by overexpression studies. HSP70 family members exhibit sequence and structural conservation. The significance of the multiplicity of HSP70 proteins is unknown. In this study, coimmunoprecipitation was employed to determine if association of HSP70 family members occurs, including Hsp70B′ which is present in the human genome but not in mouse and rat. Heteromeric complexes of Hsp70B′, Hsp70, and Hsc70 were detected in differentiated human SH-SY5Y neuronal cells. Hsp70B′ also formed complexes with Hsp40 suggesting a common co-chaperone for HSP70 family members.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号