首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thorough understanding of age-related phenomena on the trabecular architecture in the human lumbar spine can help the diagnosis and prognosis of age-related architectural changes, and provide an insight into the corresponding clinical assessments. In this paper we considered the different loading conditions of the young and old lumbar spines mainly caused by disc degeneration and studied the effect of loading alteration on trabecular architecture in lumbar spines. A two-dimensional μFE models with a 40 μm pixel resolution were built to represent the full trabecular architecture in the human lumbar spine, and a topology optimization with the aid of finite element method was conducted to numerically investigate the trabecular morphological changes. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used for the study of bone remodeling. As a result of adaptive response of bone remodeling due to different loading conditions, we obtained two distinctively different trabecular architectures for the young and old lumbar spines, and we observed a strong correlation between our numerical results and the actual trabecular architecture in the literature. The proposed numerical framework and results demonstrated the potential use of the topology optimization-based numerical tool for putative treatments in advance of actual clinical procedures for the patients.  相似文献   

2.
The effect of implant-bone bonding and the effect of implant surface roughness on bone remodeling near the bone-implant interface were studied by using a surface remodeling theory and the boundary element method. The study has shown that implant attachment plays an important role in bone remodeling near the implant. It has been observed in animal experiments and in clinical situations that the remodeled trabecular bone architecture around a cylindrical implant could vary, on one hand, from a hub surrounding the implant with a set of external spokes to, on the other hand, a hubless situation in which a set of spokes attach directly to the implant. It is shown here that the difference in these structures may be attributed to differences in implant attachment. The results show that the bone with perfect bonding or roller boundary condition without a gap remodeled to a hubless spoke trabecular bone architecture. On the other hand, the roller boundary condition with a specified gap yielded a spoke trabecular architecture with a hub or ring surrounding the implant. These quantitative results mirror the experimental and clinical observations. It is concluded that the hub is a consequence of the gap and not a consequence of the lack of friction between the implant and the bone.  相似文献   

3.
Hardness of trabecular human bone, evaluated by microindentation testing, has generally been measured on embedded tissues. It was known that this was not ideal but it had been preferred to other conditions (e.g. wet or dehydrated) as the trabeculae could withstand the applied load and the measurements were reliable. The aim of this study was to investigate if the tissue condition of the specimen and the applied load would alter the hardness values measured by Vickers microindentation. Vickers hardness values of human trabecular bone from the femoral head, prepared in three different ways (wet, dry and embedded) and tested with two different loads (50 and 25 gf), were measured. No significant difference was found between the two different loads. However, in several cases the 50 gf indentations had to be redone because they were too large or the trabecula broke locally. Even if the outlines of the indentations on wet bone were slightly less marked than the ones done on dehydrated or embedded bone, it was possible to measure the hardness. Significant differences of Vickers hardness values were found between the three preparations: the hardness increased passing from wet to dried (10%) and from wet to embedded (35%). Whereas the variation coefficient of the three tissue conditions were comparable. In conclusion, it is recommended to test human trabecular bone in a wet condition as it better represents the in vivo condition. Furthermore the use of a 25 gf load is suggested, allowing hardness measurements on almost all trabeculae without breaking them.  相似文献   

4.
The architecture of the shoulder in some mammals   总被引:2,自引:0,他引:2  
A series of nine features of the shoulder girdle, chosen as having functional significance in relation to the movements of the shoulder in arboreal locomotion, have been studied in 1188 specimens of 194 genera of mammals. The features were defined metrically and examined by means of a multivariate statistical technique: viz. canonical analysis. The study has shown that those mammals which are nonarboreal differ considerably among themselves and form the arboreal forms. But the myriad shapes of the shoulder girdle in a wide range of mammals (e.g. some marsupials, edentates, rodents, carnivores and primates) which climb or forage in trees, can be summarized mathematically by a very small number of similar canonical variates. This information correlates well with that of a previous series of studies carried out on the primates alone. The biological information that was postulated as being reflected by the individual canonical variates for the primates is also apparent for the arboreal mammals. The different variates separate the forms in ways which are consonant with what is known about the function of the shoulder in locomotion. Aspects of the shape of the shoulder defined by the analysis appear to be discernible from an examination of the contribution of the original variables to each individual canonical variate. This seems to confirm that the shape of the shoulder girdle within a very wide range of mammals is limited by a very small number of underlying factors of biological significance. One interpretation of the results suggests that the genetic model of the mammalian shoulder may have been sufficiently fixed at an early stage in the evolution of the class as to place considerable constraints upon the subsequent evolution of the shoulder in the different Orders.  相似文献   

5.
6.
The labrum contributes to passive glenohumeral joint stability. Cadaveric studies have demonstrated that this has position and load dependency, which has not been quantified under physiological loads. This study aims to validate subject-specific finite element (FE) models against in vitro measurements of joint stability and to utilise the FE models to predict joint stability under physiological loads. The predicted stability values were within ± one standard deviation of experimental data and the FE models showed a reduction in stability of 10–15% with high, physiological, loads. The developed regression equations provide the first representation of passive glenohumeral stability and will aid surgical decision-making.  相似文献   

7.
8.
Apparent yield strains for trabecular bone are uniform within an anatomic site but can vary across site. The overall goal of this study was to characterize the contribution of inter-site differences in trabecular architecture to corresponding variations in apparent yield strains. High-resolution, small deformation finite element analyses were used to compute apparent compressive and tensile yield strains in four sites (n = 7 specimens per site): human proximal tibia, greater trochanter, femoral neck, and bovine proximal tibia. These sites display differences in compressive, but not tensile, apparent yield strains. Inter-site differences in architecture were captured implicitly in the model geometries, and these differences were isolated as the sole source of variability across sites by using identical tissue properties in all models. Thus, the effects inter-site variations in architecture on yield strain could be assessed by comparing computed yield strains across site. No inter-site differences in computed yield strains were found for either loading mode (p > 0.19), indicating that, within the context of small deformations, inter-site variations in architecture do not affect apparent yield strains. However, results of ancillary analyses designed to test the validity of the small deformation assumption strongly suggested that the propensity to undergo large deformations constitutes an important contribution of architecture to inter-site variations in apparent compressive yield strains. Large deformations substantially reduced apparent compressive, but not tensile, yield strains. These findings indicate the importance of incorporating large deformation capabilities in computational analyses of trabecular bone. This may be critical when investigating the biomechanical consequences of trabecular thinning and loss.  相似文献   

9.
The effect of the boundary conditions between trabecular bone specimens and the test columns of the testing machine was studied together with the effect of side-constraint on the mechanical behaviour of trabecular bone during axial compression. Cylindrical specimens taken from the upper tibial epiphysis of autopsy knees were tested non-destructively by cyclic compression to 0.8% strain under different conditions. Fixation of the specimens to the test columns by a thin layer of bone cement increased the stiffness by 40% and reduced the energy dissipation to 67% of those measured under unconstrained conditions (p less than 0.001). The thin cement layer alone increased the stiffness 19% and reduced energy dissipation to 86% (n.s.). When the machine was equipped with polished steel columns coated by a film of low-viscous oil, both the stiffness and the energy dissipation were reduced to 93% of those measured under standard conditions (p less than 0.005). Trabecular bone specimens tested side-constrained by the surrounding trabecular bone (in situ) showed a 19% larger stiffness than that measured during later testing of the corresponding machined specimens (p less than 0.005) whereas the energy dissipation was not altered significantly. The same specimens showed a 22% increase of stiffness and a 68% increase of energy dissipation when they were side-constrained by a closely fitting steel cylinder (p less than 0.005).  相似文献   

10.
This study investigates how the microstructural properties of trabecular bone affect suture anchor performance. Seven fresh-frozen humeri were tested for pullout strength with a 5 mm Arthrex Corkscrew in the greater tuberosity, lesser tuberosity, and humeral head. Micro-computed tomography analysis was performed in the three regions of interest directly adjacent to individual pullout experiments. The morphometric properties of bone mineral density (BMD), structural model index (SMI), trabecular thickness (TbTh), trabecular spacing (TbS), trabecular number (TbN), and connectivity density were compared against suture anchor pullout strength. BMD (r=0.64), SMI (r=?0.81), and TbTh (r=0.71) showed linear correlations to the pullout strength of the suture anchor with p-values<0.0001. A predictive model was developed to explain the variances in the individual BMD, SMI, and TbTh correlations. The multi-variant model of pullout strength showed a stronger relationship (r=0.86) compared to the individual experimental results. This study helps confirm BMD is a major influence on the pullout strength of suture anchors, but also illustrates the importance of local microstructure in pullout resistance of suture anchors.  相似文献   

11.
The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks.  相似文献   

12.
13.
A major concern for long-term spaceflight is the effect of microgravity on bone structure and mass as a loss of cortical and trabecular bone volume and density, both of which can lead to decreased bone strength and an increased risk of bone fracture. Detailed analysis of the three-dimensional structure of trabecular bone, and its relation to bone strength has become feasible only recently using high-resolution 3D imaging techniques. In particular, magnetic resonance microscopy (MRM) has proved to be particularly useful for the ex vivo evaluation of the complex architecture of trabecular bone. In this study, we describe the use of two different MRM-based methods for the quantitative evaluation of the three-dimensional structure of trabecular bone explants and for the prediction of their biomechanical properties. The in vivo application of such methods is also discussed.  相似文献   

14.
The present study examines the viscoelastic behavior of cancellous bone at low strains and the effects of damage on this viscoelastic behavior. It provides experimental evidence of interaction between stress relaxation behavior and the effect of accumulated damage. The results suggest that damage is at least orthotropic in trabecular bone specimens under uniaxial loading. Simple linear models of viscoelasticity described the time-dependent stress-strain behavior at low strains before and after specimen damage, although better fits of these models were obtained prior to damage. Modeling the observed changes in relaxation times with damage accumulation appears necessary to successfully predict the post-damage viscoelastic response.  相似文献   

15.
16.
17.
Dental implants may alter the mechanical environment in the jawbone, thereby causing remodelling and adaptation of the surrounding trabecular bone tissues. To improve the efficacy of dental implant systems, it is necessary to consider the effect of bone remodelling on the performance of the prosthetic systems. In this study, finite element simulations were implemented to predict the evolution of microarchitecture around four implant systems using a previously developed model that combines both adaptive and microdamage-based mechano-sensory mechanisms in bone remodelling process. Changes in the trabecular architecture around dental implants were mainly focused. The simulation results indicate that the orientational and ladder-like architecture around the implants predicted herein is in good agreement with those observed in animal experiments and clinical observations. The proposed algorithms were shown to be effective in simulating the remodelling process of trabecular architecture around dental implant systems. In addition, the architectural features around four typical dental implant systems in alveolar bone were evaluated comparatively.  相似文献   

18.
19.
The purpose of this study was to investigate which muscle group, the agonist or antagonist, contributes most to the shoulder position sense (SPS). The SPS was tested under 2 conditions: fatigued shoulder internal rotator (IR) muscles (pectoralis major and latissimus dorsi) and fatigued external rotator (ER) muscles (infraspinatus). In each condition, the SPS was measured before and after a fatiguing task involving the IR or ER muscles by repeating shoulder joint rotation. SPS was measured using a method in which subjects reproduced a memorized shoulder joint rotation angle. The position error values in all conditions (fatigued IR and ER muscles) and measurement periods (before- and after-fatigue task) were compared using 2-way analysis of variance with repeated measures (IR/ER × before/after). Position error increased significantly after both fatigue tasks (before- vs. after-fatigue: IR muscle, 2.68° vs. 4.19°; ER muscle, 2.32° vs. 4.05°). In other words, SPS accuracy decreased when either the agonist or antagonist muscle was fatigued. This finding indicated that SPS may be affected by an integrated information of the afferent signals in the agonist and antagonist muscles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号