首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
In recent years, quagga mussels (Dreissena rostriformis bugensis) have almost completely replaced zebra mussels (Dreissena polymorpha) in the Lower Great Lakes. As recreational boats are the main vector of spread for dreissenids in North America, this study examined whether lakes Erie and Ontario could still be sources for the spread of zebra mussels. In the summer–fall of 2010, the abundance of each species of Dreissena on 196 boats from 5 marinas in lakes Erie and Ontario was examined. Additional samples of Dreissena in 2010–2012 were collected in tributaries, bays, and in the upper littoral zones of these lakes. A total of 77 boats were fouled by Dreissena, and of those 61 were fouled by both species, 13 were fouled just by zebra mussels, and only 3 were fouled solely by quagga mussels. Although quagga mussels compose ~ 99% of dreissenids in eastern Lake Erie and in Lake Ontario, on boats at most marinas sampled, zebra mussels were usually more abundant and significantly larger than quagga mussels. Refugia for zebra mussels were found in bays, tributaries, and upper littoral zones with high wave activity. Thus, although quagga mussels are now more abundant than zebra mussels within the Lower Great Lakes, these waterbodies still have the potential to be a source for the spread of zebra mussels, and for some vectors, the propagule pressure from zebra mussels is likely greater than that from quagga mussels.  相似文献   

2.
The invasion of the Great Lakes by zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) has been accompanied by tremendous ecological change. In this paper we characterize the extent to which dreissenids dominate the nearshore of the Canadian shoreline of Lake Ontario and examine mussel distribution in relation to environmental factors. We surveyed 27 5-m sites and 25 20-m sites in late August 2003. Quagga mussels dominated all sites (mean: 9,404/m2; range 31–24,270), having almost completely replaced zebra mussels. Round gobies (Neogobius melanostomus) were associated with quagga populations dominated by large mussels. Quagga mussel total mass was low at 5-m sites with high upwelling frequency; we believe this is the first documentation of reduced benthic biomass in areas of upwelling in Lake Ontario. Overall, we estimated 6.32×1012 quagga mussels weighing 8.13×1011 g dry weight and carpeting ∼66% of the nearshore benthic habitat. Quagga mussels are a dominant and defining feature of the Lake Ontario nearshore, and must be accounted for in management planning.  相似文献   

3.
Populations of the benthic amphipod Diporeia spp. have sharply declined since the early 1990s in all North America's Great Lakes except Lake Superior. The onset and continued decline coincides with the invasion of these lakes by zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels and the spread of quagga mussels to deep habitats. The six deepest Finger Lakes of central New York (Seneca, Cayuga, Skaneateles, Canandaigua, Keuka, and Owasco) have historically been Diporeia habitat and have had dreissenids for more than a decade. These lakes represent a wide range of trophic state, maximum depth, and dreissenid invasion history. We hypothesized that Diporeia abundance would be negatively impacted by dreissenid mussel expansion in the Finger Lakes. During 2006–2010, we sampled Diporeia and mussel populations in these six lakes. Diporeia was present in all six lakes, and was abundant (2000/m2) in Owasco Lake that has only zebra mussels and in Cayuga and Seneca Lakes that have had zebra and quagga mussels since 1994. Diporeia abundance was lowest (1000/m2) in Skaneateles, Canandaigua, and Keuka Lakes where quagga mussels have recently expanded. Productivity indicators explained much of the variability of Diporeia abundance. The persistence of Diporeia with quagga mussels in these lakes may be because of available alternative food resources. Fatty acid tracers indicate that Diporeia from Owasco Lake, the lake without quagga mussels, utilize diatoms, but Diporeia from Cayuga Lake that coexist with abundant quagga mussels also use food resources associated with terrestrial detritus that cannot be intercepted by dreissenids.  相似文献   

4.
A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreisenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.  相似文献   

5.
The collapse of Diporeia spp. and invasions of dreissenid mussels (zebra, Dreissena polymorpha; quagga, D. bugensis) and round goby (Neogobius melanostomus) have been associated with declines in abundance of native benthic fishes in the Great Lakes, including historically abundant slimy sculpin (Cottus cognatus). We hypothesized that as round goby colonized deeper habitat, slimy sculpin avoided habitat competition, predation, and aggression from round goby by shifting to deeper habitat. Accordingly, we predicted increased depth overlap of slimy sculpin with both round goby and deepwater sculpin (Myoxocephalus thompsonii) that resulted in habitat squeeze by both species. We used long-term bottom trawl data from Lakes Michigan, Huron, and Ontario to evaluate shifts in slimy sculpin depth and their depth overlap with round goby and deepwater sculpin. Lake Huron most supported our hypotheses as slimy sculpin shifted to deeper habitat coincident with the round goby invasion, and depth overlap between slimy sculpin and both species recently increased. Slimy sculpin depth trends in Lakes Michigan and Ontario suggest other ecological and environmental factors better predicted sculpin depth in these lakes.  相似文献   

6.
Field evidence suggests a shift in the dreissenid population from zebra (Dreissena polymorpha) to quagga (D. bugensis) mussels is occurring within the lower Great Lakes. This laboratory study directly compared per-mussel and per-dry-weight filtration rates (volume per time) of both species, gauged by the clearance of resuspended natural sediments (1 to 12 mg/L) from gently mixed, 1-L static vessels. Mussels of 15- and 20-mm lengths were collected together from the Lake Ontario drainage basin at Oak Orchard Creek, Medina, NY, and maintained and tested in ambient Niagara River water. A 2 × 4 factorial design was employed, with species and season as independent factors. Season significantly influenced filtration rate of both size classes, and winter rates were about half those measured during the rest of the year. Species significantly influenced filtration of 20-mm mussels. Quagga mussels of this size filtered up to 37% faster than zebra mussels (data for spring: 309 vs. 226 mL/h/mussel, n = 18 and 20 individuals, respectively). Species was not a significant factor alone for 15-mm mussels, but a species x season interaction was significant. The zebra mussels employed here had 16 to 22% more ash-free dry weight (AFDW) than the quagga mussels, accentuating filtration differences when expressed per-mg-AFDW.  相似文献   

7.
The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time. We used multivariate community analyses to examine temporal changes in community composition over the last 54 years and to assess the major drivers of long-term changes in benthos. The benthic community of Lake Ontario underwent significant transformations that correspond with three major periods. The first period, termed the pre/early Dreissena period (1964–1990), was characterized by high densities of Diporeia, Sphaeriidae, and Tubificidae. During the next period defined by zebra mussel dominance (the 1990s) the same groups were still prevalent, but at altered densities. In the most recent period (2000s to present), which is characterized by the dominance and proliferation of quagga mussels deeper into the lake, the community has changed dramatically: Diporeia almost completely disappeared, Sphaeriidae have greatly declined, and densities of quagga mussels, Oligochaeta and Chironomidae have increased. The introduction of invasive dreissenids has changed the Lake Ontario benthic community, historically dominated by Diporeia, Oligochaeta and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Dreissenids, especially the quagga mussel, were the major drivers of these changes over the last half century.  相似文献   

8.
Dreissenid mussels have become important components of the Great Lakes biological community since their introduction in the 1980s, but much remains to be understood regarding their effect on energy and nutrient flows in pelagic systems. Here, we report a new method that tracks incorporation of resources of molluskan origin into food webs used by aquatic birds. Biochemical tracers (fatty acids and stable carbon isotopes) are used to characterize species associated with pelagic and benthic food webs in Lake Ontario. Our focus is on the polymethylene-interrupted fatty acids (PMI-FAs) because previous research identified mollusks as their primary source. We found that PMI-FA mass fractions were greater in organisms associated with benthic (e.g. round goby) versus pelagic (e.g. alewife) food webs. Double-crested cormorants that had recently consumed benthic prey fish, i.e. goby, had greater proportions of PMI-FAs in their blood plasma than birds which showed no signs of recent goby ingestion. We did not detect an increase in mass fractions of PMI-FAs in cryogenically archived cormorant eggs following expansion of dreissenid mussels in Lake Ontario. However, following the introduction and expansion of round goby in the lake, PMI-FAs were detected at greater levels in cormorant eggs. These results illustrate how only after dreissenid mussel-facilitated establishment of round goby was the full extent of exotic species disruption of food webs manifested in fish-eating birds. These food web changes may be contributing to negative impacts on aquatic birds exemplified by the emergence of Botulism Type E as a significant mortality factor in this ecosystem.  相似文献   

9.
We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5–100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900 pmol g− 1·min− 1 and activities in quagga mussels ranged from 19,500 to 223,800 pmol g− 1·min− 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.  相似文献   

10.
Although the typical interaction between non-native invasive species and native species is considered to be negative, in some cases, non-native species may facilitate native species. Zebra and quagga mussels (Dreissena spp.) are aggressive invaders in freshwater systems, and they can alter energy flow by diverting nutrients from pelagic to benthic food-webs. In the last two decades, quagga mussels have largely replaced zebra mussels in shallow regions of the Laurentian Great Lakes and colonized deeper waters previously devoid of all dreissenids. Here, we aim to characterize potential positive effects of dreissenids in relation to depth on the benthic community in lakes Michigan and Huron. For this study, we used benthic survey data collected from Lake Michigan in 2015 and Lake Huron in 2017 and annual U.S. EPA Great Lakes National Program Office Long-term Biology Monitoring Program data for both lakes from 1998 to 2019. Benthic species richness and abundance (excluding dreissenids) in both lakes were almost three-fold higher in the nearshore (<70 m) compared to offshore (>70 m) communities. We found that, even though abundance of benthic invertebrates decreased with increased depth, total benthos density and biomass were higher in the presence than in the absence of quagga mussels in both lakes. Moreover, increased quagga mussel density and biomass with depth offset the lower benthos density and biomass at deeper depths, and samples with dreissenids had high densities of oligochaetes in both nearshore and offshore communities. These patterns are consistent with facilitative effects of quagga mussels on both shallow and deep-water benthic communities.  相似文献   

11.
In this study, the utility of quagga mussels (Dreissena bugensis) as biomonitors was investigated by measuring total concentrations of three trace metals, cadmium, copper, and zinc, in soft tissues. Quagga mussels were sampled from five sites along the upper St. Lawrence River, including one industrially influenced site, from 1999 through 2007. Mussels were collected from near-shore areas, divided into 5 size classes based on maximum shell length, and tissues were pooled for analysis of each size group. Two-way analysis of variance and a posteriori range tests were used to test for differences among sites along a distance gradient from the outflow of Lake Ontario and to examine inter-annual variability within and among sites. Cadmium concentrations were higher nearer the outflow of the lake. Copper concentrations varied among sites and years, but were generally highest near the industrial site. Zinc concentrations were relatively uniform, possibly reflecting internal regulation. Animal size measured as shell length was not an important factor in this section of the river, but warrants further consideration in a wider range of ecosystems and contaminant exposure levels. In general, concentrations of the three metals were not high compared to reports in the published literature for dreissenid mussels in contaminated environments. However, few studies have utilized quagga mussels rather than zebra mussels. The two species may differ in bioaccumulation patterns and may not be interchangeable as biomonitors. Further studies of bioaccumulation of contaminants by quagga mussels in a wider range of contaminant exposures would be useful particularly as quagga mussels displace zebra mussels in the Laurentian Great Lakes and the St. Lawrence River.  相似文献   

12.
Understanding dreissenid mussel population dynamics and their impacts on lake ecosystems requires quantifying individual growth across a range of habitats. Most dreissenid mussel growth rates have been estimated in nutrient rich or nearshore environments, but mussels have continued to expand into deep, cold, low-nutrient habitats of the Great Lakes. We measured annual quagga mussel (Dreissena rostriformis bugensis) growth at 15 m, 45 m, and 90 m in Lake Ontario using caged mussels near Oswego, New York, USA from June 2018 to May 2019. Quagga mussel growth (starting size 12 mm) was greatest at 15 m (mean shell length increase = 10.2 mm), and was lower at 45 m (5.9 mm) and 90 m (0.7 mm). Caged mussels were obtained from near the 90-m site and those reared at 15 and 45 m developed thicker shells than those that were caged at 90 m. We observed relatively high colonization by quagga and, to a lesser degree, zebra mussels (Dreissena polymorpha) at 15 m, very few colonizers at 45 m, and none at 90 m. Higher growth potential, but low natural mussel densities observed at 15 m and 45 m suggest factors other than growth limit dreissenid abundance at these depths. The relatively slow dreissenid growth rates observed in offshore habitats are consistent with the gradual abundance increases documented in these zones across the Great Lakes and suggest new mussels that become established in these habitats may contribute to ecosystem effects for decades.  相似文献   

13.
Circular Rep Encoding Single Stranded (CRESS) DNA viruses are a diverse group of viruses that have been identified in both terrestrial and aquatic ecosystems. Recent work in the Laurentian Great Lakes characterized the ecology and diversity of CRESS-DNA viruses associated with amphipods, Diporeia spp. In the last 20 years the Lake Michigan benthos has changed considerably with drastic population declines of Diporeia spp. concurrent with an increase in invasive quagga mussel (Dreissena rostriformis bugensis) abundance. The purpose of this study was to characterize CRESS-DNA virus-like elements (VLES; which could represent complete, partial/defective, endogenized or satellite viruses) associated with both invasive quagga mussels and in sediment collected in central Lake Michigan. Viral metagenomic libraries were prepared from two size classes (>25 mm and <15 mm shell length) of Lake Michigan quagga mussels and for two different sediment layers (136 mm and 290 mm below the lake floor) in a sediment core extracted from the lake. Viral metagenomes were different between quagga mussels and sediment cores. Nine VLE sequences were present in both the quagga mussel tissues and the sediment core layers analyzed. Cs137 radiometric dating results indicate that these VLEs were present in the sediment prior to arrival of quagga mussels in Lake Michigan. These data suggest quagga mussels may interact with CRESS-DNA VLEs and algal DNA VLEs historically present in the Lake Michigan benthos. Overall, these data suggest that quagga mussels interacted with CRESS-DNA VLES present in Lake Michigan benthos since at least 1952.  相似文献   

14.
Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001–2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.  相似文献   

15.
Experiments from May to December measuring selective grazing and egestion of different phytoplankton taxa in natural Saginaw Bay (Lake Huron) seston by shallow-water morph quagga mussels (Dreissena bugensis rostriformis) showed that the mussels were highly selective filter feeders and that their net clearance rates on different species ranged widely, resulting in food consumption that was strongly driven by seasonal phytoplankton dynamics. Overall, net clearance rates by quagga mussels on the entire phytoplankton assemblage were similar to those observed for zebra mussels (Dreissena polymorpha) during the 1990s. Phytoplankton taxon, rather than size, was more important to food selection since quagga mussels cleared similar sized but different species of algae at very different rates. In contrast to many studies with zebra mussels, larger-sized algae such as Dinobryon divergens, Aulacoseira italica, Fragilaria crotonensis, and Anabaena were cleared at high rates and rejected at lower rates than many smaller species within the same broad taxonomic group. We suspect that these differences between dreissenid species do not stem from species differences but methodological factors and phytoplankton composition of systems studied. Small-sized diatoms, green algae with thick cell walls (Scenedesmus and Oocystis), and colonial cyanobacteria with gelatinous sheaths (Aphanocapsa, Chroococcus, and Microcystis) were cleared at low rates and rejected in high proportion in pseudofeces or feces during all seasons. We describe the likely mechanisms of pre- and post-ingestive behavior that explain these differences, which relate to phytoplankton size, morphology, cell wall characteristics, and chemical composition. Changes in the Great Lakes phytoplankton communities are consistent with mussel grazing preferences.  相似文献   

16.
Benthic monitoring by USGS off the southern shore of Lake Ontario from October 1993 to October 1995 provides a detailed view of the early stages of the decline of the native amphipod Diporeia. A loss of the 1994 and 1995 year classes of Diporeia preceded the disappearance of the native amphipod at sites near Oswego and Rochester at depths from 55 to 130 m. In succeeding years, Diporeia populations continued to decline in Lake Ontario and were nearly extirpated by 2008. Explanations for Diporeia's decline in the Great Lakes include several hypotheses often linked to the introduction and expansion of exotic zebra and quagga mussels (Dreissena sp.). We compare the timeline of the Diporeia decline in Lake Ontario with trends in two sources of organic matter to the sediments — spring diatom blooms and late summer whiting events. The 1994–95 decline of Diporeia coincided with localized dreissenid effects on phytoplankton in the nearshore and a year (April 1994 to May 1995) of decreased flux of organic carbon recorded by sediment traps moored offshore of Oswego. Later declines of profundal (> 90 m) Diporeia populations in 2003 were poorly associated with trends in spring algal blooms and late summer whiting events.  相似文献   

17.
Quagga and zebra mussels (Dreissena bugensis and D. polymorpha) are spreading across lakes in Europe and North America. In particular, quagga mussels colonize lakes to great depths (>200 m). To better understand the colonization pattern of quagga mussels in deep lakes, we studied the settlement of quagga mussels along a depth gradient on colonization plates at multiple depths (1–140 m) in the pelagic zone of two recently invaded perialpine lakes, Lake Constance and Lake Geneva. We measured colonization rates every three months over one year on colonization plates deployed in both lakes at defined depths. We also assessed long-term population dynamics from abundance and size distribution using repeated photogrammetry of colonization plates. Highest colonization rates and largest mussel sizes occurred above 8 m depth, and almost no zebra mussels were found. Colonization rates decreased to almost zero below 30 m. Colonization rates on plates were associated with variation in environmental conditions as well as veliger densities in the plankton across season and depth. Temperature was the most important environmental parameter that influenced colonization. Our results will help to better understand the seasonal colonization patterns of invasive quagga mussels in deep lakes.  相似文献   

18.
The status of invasive dreissenid mussels (Dreissena polymorpha and D. bugensis) and native amphipods (Diporeia spp.) in Lake Ontario was assessed in 2003 and compared with historical data. D. polymorpha (zebra mussels) were rarely observed in 2003, having been displaced by D. bugensis (quagga mussels). D. bugensis expanded its depth range from 38 m depth in 1995 to 174 m in 2003 and this dreissenid reached densities averaging 8,000/m2 at all sites < 90 m. During the same time period, Diporeia populations almost completely disappeared from 0–90 m depth, continuing a declining trend from 1994–1997 reported in previous studies. The average density of Diporeia in the 30–90 m depth interval decreased from 1,380/m2 to 63/m2 between 1997 and 2003. Prior to 2003, areas deeper than 90 m represented a refuge for Diporeia, but even these deep populations decreased, with densities declining from 2,181/m2 in 1999 to 545/m2 in 2003. Two common hypotheses for the decline of Diporeia in the Great Lakes are food limitation and a toxin/pathogen associated with dreissenid pseudofeces. The Diporeia decline in deep waters preceded the expansion of D. bugensis to these depths, and suggests that shallow dreissenid populations remotely influence profundal habitats. This pattern of decline is consistent with mechanisms that act from some distance including nearshore dreissenid grazing and downslope transport of pseudofeces.  相似文献   

19.
The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottomtrawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001–2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001–2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001–2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.  相似文献   

20.
Diporeia spp. were a key component of the Great Lakes benthos, converting the pelagic algal rain to secondary production, which is critical for Great Lakes fishes. However, Diporeia declines since the 1980s have been rapid and widespread. While there are temporal relationships between Diporeia declines and spread of zebra and quagga mussels, establishing a mechanistic link has been difficult. Diporeia declines may result from competition for food resources with dreissenid mussels; however, conflicting evidence suggests food limitation may not be the direct link. To test food limitation, we analyzed gut contents of Diporeia collected between the 1980s and 2009 from two deep (>100 m) and one nearshore station (~50 m depth) in southern Lake Michigan. We further analyzed sediment cores from the same stations to resolve relationships among food resources, Diporeia diet, and diet selectivity during pre- and post-dreissenid invasion. In spring, pre-dreissenid Diporeia fed selectively and exclusively on large (Stephanodiscus) and filamentous centric diatoms (Aulacoseira). Diporeia diets showed significant shifts during the 2000s to greater proportions of small centric and araphid diatoms, coincident with Diporeia declines and offshore expansion of quagga mussels. Sediment cores recorded declines in Aulacoseira and large Stephanodiscus from 1960 to 2009 and increases in small centrics after dreissenid introduction. Accounting for high selectivity in springtime Diporeia diets, community changes in sediment records are consistent with changes observed in Diporeia diets and suggest Diporeia declines have been exacerbated by a shift from more nutritious and highly preferred diatom species to less nutritious and negatively selected species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号