首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Shome S  Dasgupta PS  Basu S 《PloS one》2012,7(2):e31682
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D(2) receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D(2) receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D(2) receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D(2) receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues.  相似文献   

2.
Nitric oxide inhibits wound collagen synthesis   总被引:3,自引:0,他引:3  
Nitric oxide (NO) is a messenger molecule which regulates many physiological functions like immunity, vascular tone and serves as a neurotransmitter. Although it is known to participate in healing process, its role in collagen synthesis is not clear. Therefore, the present investigation was done to study the role of NO in wound collagen synthesis. Rats received full thickness, circular (8 mm), transdermal wounds which were treated with NO releaser, sodium nitroprusside (SNP, 0.001 100 M) topically for 5 days. Wound collagen content estimated in terms of hydroxyproline (HP) and confirmed histochemically was decreased significantly by all SNP doses. L-Arginine, a substrate for nitric oxide synthase (NOS) when applied topically decreased collagen content of the wounded tissues. N-Nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of NOS, increased wound collagen content significantly as compared to untreated and SNP treated animal wounds when administered intraperitoneally at the doses 3, 10 and 30 mg/kg. Furthermore, histological findings also demonstrated laying down of thick collagen bundles and proliferation of fibroblasts together with prominent angiogenesis in L-NAME treated wound tissues as compared to untreated and SNP treated tissues. N-nitro-D-arginine methyl ester, an inactive isomer, was found to have no effect on wound collagen levels. When L-arginine was administered in L-NAME pretreated rats, it significantly elevated wound HP content. The results indicate that NO plays an important role in regulating the collagen biosynthesis in skin model of a healing wound.  相似文献   

3.
Nicotine (4 × 2 mg/kg, i.p.) was given every 30 min for 2 h to male rats. Some rats were pretreated with the D1 dopamine (DA) receptor antagonist SCH 23390 (1 mg/kg, i.p.) or with the D2 DA receptor antagonist raclopride (1 mg/kg, i.p.), 5 min before nicotine treatment. Hypothalamic and preoptic catecholamine levels were measured by quantitative histofluorimetry in discrete DA and noradrenaline nerve terminal systems.Nicotine treatment produced a depletion of catecholamine stores in noradrenaline and DA nerve terminals of the hypothalamus, the preoptic area and the median eminence, an action which was counteracted by SCH 23390 but not by raclopride.The results indicate that hypothalamic D1 DA receptors may regulate the sensitivity of the nicotinic cholinoceptors and increase their ability to release hypothalamic noradrenaline. A possible role of D1 DA receptor antagonists to reduce the ability of nicotine treatment to produce rapid increases in LH, prolactin and corticosterone secretion and tonic arousal is implicated.  相似文献   

4.
It is controversial whether dopamine (DA) is a peripheral neurotransmitter in the cardiovascular/renal system. The endogenous concentration of DA in the heart and blood vessels is generally only a fraction (5%) of that of norepinephrine (NE). With perhaps the exception of the kidney, the majority of the evidence suggests a precursor role for this amine rather than that of a neurotransmitter. The main weakness of arguments favoring DA as a vascular neurotransmitter is relative lack of data showing selective DA release and lack of effects of selective DA antagonists on neural stimulation. However, DA receptors have been characterized in cardiovascular tissues and are of two types: DA1 receptors located on vascular smooth muscle (postjunctional), which appear to mediate relaxation of the muscle, and DA2 receptors located on sympathetic nerves (pejunctional), which inhibit NE release. These receptors are interesting and potential target sites for novel cardiovascular drug action for the treatment of hypertension and renal ischemia. Moreover, selective DA receptor agonists will be important tools in understanding the role of DA receptors in normal and disease states.  相似文献   

5.
6.
Hypoxia, caused by disrupted vasculature and peripheral vasculopathies, is a key factor that limits dermal wound healing. Factors that can increase oxygen delivery to the regional tissue, such as supplemental oxygen, warmth, and sympathetic blockade, can accelerate healing. Clinical experience with adjunctive hyperbaric oxygen therapy (HBOT) in the treatment of chronic wounds have shown that wound hyperoxia may increase granulation tissue formation and accelerate wound contraction and secondary closure. However, HBOT is not applicable to all wound patients and may pose the risk of oxygen toxicity. Thus, the efficacy of topical oxygen treatment in an experimental setting using the pre-clinical model involving excisional dermal wound in pigs was assessed. Exposure of open dermal wounds to topical oxygen treatment increased tissue pO2 of superficial wound tissue. Repeated treatment accelerated wound closure. Histological studies revealed that the wounds benefited from the treatment. The oxygen treated wounds showed signs of improved angiogenesis and tissue oxygenation. Topically applied pure oxygen has the potential of benefiting some wound types. Further studies testing the potential of topical oxygen in pre-clinical and clinical settings are warranted.  相似文献   

7.
Angiogenesis plays a central role in wound healing. Among many known growth factors, vascular endothelial growth factor (VEGF) is believed to be the most prevalent, efficacious, and long-term signal that is known to stimulate angiogenesis in wounds. Whereas a direct role of copper to facilitate angiogenesis has been evident two decades ago, the specific targets of copper action remained unclear. This report presents first evidence showing that inducible VEGF expression is sensitive to copper and that the angiogenic potential of copper may be harnessed to accelerate dermal wound contraction and closure. At physiologically relevant concentrations, copper sulfate induced VEGF expression in primary as well as transformed human keratinocytes. Copper shared some of the pathways utilized by hypoxia to regulate VEGF expression. Topical copper sulfate accelerated closure of excisional murine dermal wound allowed to heal by secondary intention. Copper-sensitive pathways regulate key mediators of wound healing such as angiogenesis and extracellular matrix remodeling. Copper-based therapeutics represents a feasible approach to promote dermal wound healing.  相似文献   

8.
Adipose‐derived stem cells (ASC) are said to have a pivotal role in wound healing. Specifically, ASC‐secreted extracellular vesicles (EV) carry diverse cargos such as microRNAs (miRNAs) to participate in the ASC‐based therapies. Considering its effects, we aimed to investigate the role of ASC‐EVs in the cutaneous wound healing accompanied with the study on the specific cargo‐medicated effects on wound healing. Two full‐thickness excisional skin wounds were created on mouse dorsum, and wound healing was recorded at the indicated time points followed by histological analysis and immunofluorescence staining for CD31 and α‐SMA. Human skin fibroblasts (HSFs) and human microvascular endothelial cells (HMECs) were co‐cultured with EVs isolated from ASC (ASC‐EVs), respectively, followed by the evaluation of their viability and mobility using CCK‐8, scratch test and transwell migration assays. Matrigel‐based angiogenesis assays were performed to evaluate vessel‐like tube formation by HMECs in vitro. ASC‐EVs accelerated the healing of full‐thickness skin wounds, increased re‐epithelialization and reduced scar thickness whilst enhanced collagen synthesis and angiogenesis in murine models. However, miR‐486‐5p antagomir abrogated the ASC‐EVs‐induced effects. Intriguingly, miR‐486‐5p was found to be highly enriched in ASC‐EVs, exhibiting an increase in viability and mobility of HSFs and HMECs and enhanced the angiogenic activities of HMECs. Notably, we also demonstrated that ASC‐EVs‐secreted miR‐486‐5p achieved the aforesaid effects through its target gene Sp5. Hence, our results suggest that miR‐486‐5p released by ASC‐EVs could be a critical mediator to develop an ASC‐based therapeutic strategy for wound healing.  相似文献   

9.
The effects of the GABA(A) receptor antagonist bicuculline, the D2-like receptor antagonist sulpiride and the D1-like receptor antagonist SCH-23390 on the electrical high frequency stimulation (HFS)-evoked gamma-aminobutyric acid (GABA) and dopamine (DA) release were measured from slices of the rat striatum by means of HPLC method with electrochemical detection. HFS with 130Hz stimulated veratridine-activated GABAergic neurons resulting in an increased GABA outflow while DA outflow decreased. In the presence of the GABA(A) receptor antagonist bicuculline extracellular GABA and DA outflow were enhanced. When the competitive dopamine D2-like receptor antagonist S-(-)-sulpiride was added to incubation medium, the HFS-evoked stimulatory effect on GABA outflow declined to values found after veratridine (1microM) without HFS. After co-incubation of sulpiride and the competitive D1-like receptor antagonist R-(+)-SCH-23390, the effect of sulpiride on HFS plus veratridine-evoked GABA outflow was completely reversed. Neither sulpiride nor SCH-23390 had any influence on the effect of HFS on veratridine-induced DA outflow. No effect of HFS on glutamate outflow was observed in all experiments. These results led us to suggest that in our model HFS primarily affects GABAergic neurons. These neurons are embedded in a neuronal network with a GABA-dopamine circuit, and thus, HFS interacts with a neuronal network, not only with one neurotransmitter system or one neuron population.  相似文献   

10.
Wound healing is a complex and well-orchestrated biological process. Corneal epithelial cells (CECs) must respond quickly to trauma to rapidly restore barrier function and protect the eye from noxious agents. They express a high level of beta2-adrenergic receptors but their function is unknown. Here, we report the novel finding that they form part of a regulatory network in the corneal epithelium, capable of modulating corneal epithelial wound repair. Beta-adrenergic receptor agonists delay CEC migration via a protein phosphatase 2A-mediated mechanism and decrease both electric field-directed migration and corneal wound healing. Conversely, beta-adrenergic receptor antagonists accelerate CEC migration, enhance electric field-mediated directional migration, and promote corneal wound repair. We demonstrate that CECs express key enzymes required for epinephrine (beta-adrenergic receptor agonist) synthesis in the cytoplasm and can detect epinephrine in cell extracts. We propose that the mechanism for the pro-motogenic effect of the beta-adrenergic antagonist is blockade of the beta2-adrenergic receptor preventing autocrine catecholamine binding. Further investigation of this network will improve our understanding of one of the most frequently prescribed class of drugs.  相似文献   

11.
Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP‐labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full‐thickness cutaneous wound site in streptozotocin‐induced diabetic mice. Wounds treated with MSC‐ADM demonstrated an increased percentage of wound closure. The treatment of MSC‐ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col‐I) fibers synthesis via second harmonic generation imaging. The synthesis of Col‐I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP‐labeled MSCs during wound healing was simultaneously traced via two‐photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo‐multiplier tube.   相似文献   

12.
Cutaneous wound healing is a dynamic, complex, and well-organized process that requires the orchestration of many different cell types and cellular processes. Transforming growth factor β1 is an important factor that plays a key role during wound healing. Amphibian skin has been proven to possess excellent wound healing ability, whilst no bioactive substrate related to it has ever been identified. Here, a potential wound healing-promoting peptide (AH90, ATAWDFGPHGLLPIRPIRIRPLCG) was identified from the frog skin of Odorrana grahami. It showed potential wound healing-promoting activity in a murine model with full thickness dermal wound. AH90 promoted release of transforming growth factor β1 through activation of nuclear factor-κB and c-Jun NH2-terminal kinase mitogen-activated protein kinases signaling pathways, while inhibitors of nuclear factor-κB and c-Jun NH2-terminal kinase inhibited the process. In addition, the effects of AH90 on Smads family proteins, key regulators in transforming growth factor β1 signaling pathways, could also be inhibited by transforming growth factor β1 antibody. Altogether, this indicated that AH90 promoted wound healing by inducing the release of transforming growth factor β1. This current study may facilitate the understanding of effective factors involved in the wound repair of amphibians and the underlying mechanisms as well. Considering its favorable traits as a small peptide that greatly promoting generation of endogenous wound healing agents (transforming growth factor β1) without mitogenic effects, AH90 might be an excellent template for the future development of novel wound-healing agents.  相似文献   

13.
We have previously reported that H(2)O(2) is actively generated by cells at the wound site and that H(2)O(2)-driven redox signaling supports wound angiogenesis and healing. In this study, we have standardized a novel and effective electron paramagnetic resonance spectroscopy-based approach to assess the redox environment of the dermal wound site in vivo. Rac2 regulates inducible NADPH oxidase activation and other functional responses in neutrophils. Using Rac2-deficient mice we sought to investigate the significance of Rac2 in the wound-site redox environment and healing responses. Noninvasive measurements of metabolism of topically applied nitroxide (15)N-perdeuterated tempone in murine excisional dermal wounds demonstrated that the wound site is rich in oxidants, the levels of which peak 2 days postwounding in the inflammatory phase. Rac2-deficient mice had threefold lower production of superoxide compared to controls with similar wounds. In these mice, a lower wound-site superoxide level was associated with compromised wound closure. Immunostaining of wound edges harvested during the inflammatory phase showed that the numbers of phagocytic cells recruited to the wound site in Rac2-deficient and control mice were similar, but the amount of lipid peroxidation was significantly lower in Rac2-deficient mice, indicating compromised NADPH oxidase activity. Taken together, the findings of this study support that the wound site is rich in oxidants. Rac2 significantly contributes to oxidant production at the wound site and supports the healing process.  相似文献   

14.
Human bone marrow mesenchymal stem cells (hBM-MSC) have recently been employed in the clinical treatment of challenging skin defects. We have described an MSC population that can be easily harvested from human umbilical cord perivascular tissue, human umbilical cord perivascular cells (HUCPVC), which exhibit a higher proliferative rate and frequency than hBM-MSC. Our objective was to establish whether HUCPVC could promote healing of full thickness murine skin defects, and thus find utility as a cell source for dermal repair. To this end, bilateral full thickness defects were created on the dorsum of Balb/c nude mice. Fibrin was used as a delivery vehicle for 1 x 106 PKH-67 labeled HUCPVC with contralateral controls receiving fibrin only. Epifluorescent and brightfield microscopic evaluation of the wound site was carried out at 3 and 7 days while mechanical testing of wounds was carried out at 3, 7, and 10 days. Our results show that by 3 days, marked contraction of the wound was observed in the fibrin controls whilst the HUCPVC samples exhibited neither collapse nor contraction of the defect, and the dermal repair tissue was considerably thicker and more organized. By 7 days, complete re-epithelialization of the HUCPVC wounds was observed whilst in the controls re-epithelialization was limited to the wound margins. Wound strength was significantly increased in the HUCPVC treatment group by 3 and 7 days but no statistical difference was seen at 10 days. We conclude that HUCPVCs accelerate early wound healing in full thickness skin defects and thus represent a putative source of human MSCs for use in dermal tissue engineering.  相似文献   

15.
Involvement of notch signaling in wound healing   总被引:1,自引:0,他引:1  
The Notch signaling pathway is critically involved in cell fate decisions during development of many tissues and organs. In the present study we employed in vivo and cell culture models to elucidate the role of Notch signaling in wound healing. The healing of full-thickness dermal wounds was significantly delayed in Notch antisense transgenic mice and in normal mice treated with gamma-secretase inhibitors that block proteolytic cleavage and activation of Notch. In contrast, mice treated with a Notch ligand Jagged peptide showed significantly enhanced wound healing compared to controls. Activation or inhibition of Notch signaling altered the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in a scratch wound healing model in ways consistent with roles for Notch signaling in wound healing functions all three cell types. These results suggest that Notch signaling plays important roles in wound healing and tissue repair, and that targeting the Notch pathway might provide a novel strategy for treatment of wounds and for modulation of angiogenesis in other pathological conditions.  相似文献   

16.
《Organogenesis》2013,9(4):197-203
Human bone marrow mesenchymal stem cells (hBM-MSC) have recently been employed in the clinical treatment of challenging skin defects. We have described an MSC population that can be easily harvested from human umbilical cord perivascular tissue, human umbilical cord perivascular cells (HUCPVC), which exhibit a higher proliferative rate and frequency than hBM-MSC. Our objective was to establish whether HUCPVC could promote healing of full thickness murine skin defects, and thus find utility as a cell source for dermal repair. To this end, bilateral full thickness defects were created on the dorsum of Balb/c nude mice. Fibrin was used as a delivery vehicle for 1 x 106 PKH-67 labeled HUCPVC with contralateral controls receiving fibrin only. Epifluorescent and brightfield microscopic evaluation of the wound site was carried out at 3 and 7 days while mechanical testing of wounds was carried out at 3, 7, and 10 days. Our results show that by 3 days, marked contraction of the wound was observed in the fibrin controls whilst the HUCPVC samples exhibited neither collapse nor contraction of the defect, and the dermal repair tissue was considerably thicker and more organized. By 7 days, complete re-epithelialization of the HUCPVC wounds was observed whilst in the controls re-epithelialization was limited to the wound margins. Wound strength was significantly increased in the HUCPVC treatment group by 3 and 7 days but no statistical difference was seen at 10 days. We conclude that HUCPVCs accelerate early wound healing in full thickness skin defects and thus represent a putative source of human MSCs for use in dermal tissue engineering.  相似文献   

17.
Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.  相似文献   

18.
The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.  相似文献   

19.
In vitro models are a cost effective and ethical alternative to study cutaneous wound healing processes. Moreover, by using human cells, these models reflect the human wound situation better than animal models. Although two-dimensional models are widely used to investigate processes such as cellular migration and proliferation, models that are more complex are required to gain a deeper knowledge about wound healing. Besides a suitable model system, the generation of precise and reproducible wounds is crucial to ensure comparable results between different test runs. In this study, the generation of a three-dimensional full thickness skin equivalent to study wound healing is shown. The dermal part of the models is comprised of human dermal fibroblast embedded in a rat-tail collagen type I hydrogel. Following the inoculation with human epidermal keratinocytes and consequent culture at the air-liquid interface, a multilayered epidermis is formed on top of the models. To study the wound healing process, we additionally developed an automated wounding device, which generates standardized wounds in a sterile atmosphere.  相似文献   

20.

Introduction

Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.

Methods

Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R) in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.

Results

Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.

Conclusion

Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号