首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
咸水膜下滴灌对棉花生长和产量的影响   总被引:2,自引:0,他引:2  
试验研究了膜下滴灌方式下持续利用咸水灌溉对棉花生长和产量的影响.试验设置了3种灌溉水盐度水平:0.33(淡水)、3.62、6.71 dS/m.结果表明:土壤盐分表现出了不同程度的表聚;不同灌溉水盐度处理棉花的干物质积累无明显差异.咸水灌溉后,棉花的产量随着灌溉水盐度的增加有所降低,但差异不显著,说明棉花具有一定的耐盐性,少量咸水灌溉对棉花生长和产量的影响不明显.  相似文献   

2.
咸水灌溉对棉花耗水特性和水分利用效率的影响   总被引:4,自引:0,他引:4  
采用田间对比试验,连续3 a研究了1、3、5、7 g/L 4个矿化度咸水(记作S1、S2、S3、S4)灌溉对棉田土壤水盐、土壤蒸发、棉花阶段耗水量、籽棉产量和水分利用效率的影响。结果表明,棉花生育期内根系层土壤含水率和电导率有随灌溉水矿化度的增加而增大的趋势,土壤电导率增加尤为明显;年际间,各处理土壤含水率和电导率差异非常大,经过连续3 a灌溉,根系层土壤电导率均未逐年增加。S3和S4处理的平均土壤蒸发强度大于S1处理,S2与S1处理间的差异很小;7 g/L以下咸水灌溉对棉花耗水过程产生了一定影响,但对总耗水量影响并不明显。3 a的平均籽棉产量和水分利用效率由大到小顺序均为:S2、S1、S3、S4,S2比S1处理增产2.43%,水分利用效率增加1.15%,S3和S4比S1处理减产1.67%和8.88%,水分利用效率降低0.25%和7.31%,其中,S2和S3与S1处理间差异不显著,S4处理产量和水分利用效率降低显著。  相似文献   

3.
The influences of water quantity and quality on young lemon trees (Eureka) were studied at the University of Jordan Research Station at the Jordan Valley for 5 years (1996–2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. The primary effect of excess salinity is that it renders less water available to plants although some is still present in the root zone. Lemon trees water requirements should be modified year by year since planting according to the percentage shaded area, and this will lead into substantial water saving. Both evaporation from class A pan and the percentage shaded area can be used to give a satisfactory estimate of the lemon trees water requirement at the different growth stages. The highest lemon fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage area. Increasing irrigation water salinity 3.7 times increased average crop root zone salinity by about 3.8–4.1 times.The high salt concentration at the soil surface is due to high evaporation rate from wetted areas and the nature of soil water distribution associated with drip irrigation system. Then, the salt concentration decreased until the second depth, thereafter, salt concentration followed the bulb shape of the wetted soil volume under trickle irrigation. Irrigation water salinity is very important factor that should be managed with limited (deficit) irrigation. But increasing amount of applied saline water could result in a negative effect on crop yield and environment such as increasing average crop root zone salinity, nutrient leaching, water logging, increasing the drainage water load of salinity which might pollute ground water and other water sources.  相似文献   

4.
开展了不同灌溉定额对土壤盐分分布影响的试验研究。结果表明,灌溉定额越大,盐分运动和分布所受到的影响越大,盐分水平方向运动越远,相同距离处土壤盐分含量相对越低,垂直方向,土壤盐分向耕作层以下运移并发生聚积,毛管附近土壤盐分淋洗范围和淋洗程度均越大,远离毛管宽行距盐分聚集范围越大且较深。灌溉定额越小,浅层土壤盐分积盐率越高,毛管附近土壤盐分淋洗范围和淋洗程度均越小,远离毛管宽行距盐分聚集范围越小且较浅。  相似文献   

5.
Decades of irrigation on the west side of the San Joaquin Valley without sufficient drainage have created large areas where shallow ground water (<1.5 m) has become a problem for agriculture. Because drainage outflow is restricted as a result of environmental concerns, reducing the amount of irrigation applied is a farm management solution for this situation. One option to reduce the amount of irrigation water is to include shallow ground water use as a source of water for crop production when scheduling irrigation. The objective for this study is to describe soil water fluxes in the presence of saline, shallow ground water under a safflower crop. Two weighing lysimeters, one with and one without shallow saline ground water were used to measure crop evapotranspiration of surface drip irrigated safflower. A saline water table (14 dS/m) was maintained in one of the lysimeters. Ground water use as part of crop evapotranspiration was characterized using hourly measurements of the water level in a ground water supply tank (Mariotte bottle). Ground water contribution of up to 40% of daily crop water use was measured. On a seasonal basis, 25% of the total crop water use originated from the ground water. The largest ground water contribution was shown to occur at the end of the growing season, when roots are fully developed and stored soil water in the root zone was depleted. The applied irrigation on the crop grown in the presence of a water table was 46% less than irrigation applied to the crop without a water table. The reduction of irrigation was obtained by using the same irrigation schedule as on the lysimeter without ground water, but through smaller applied depths per irrigation event.  相似文献   

6.
咸水灌溉对土壤水热盐变化及棉花产量和品质的影响   总被引:5,自引:0,他引:5  
为了充分利用咸水资源,采用田间对比试验,研究了1、3、5、7 g/L等4个矿化度咸水(分别用S1、S2、S3、S4表示)灌溉对棉田土壤水热盐变化特征及棉花长势、产量和纤维品质的影响。结果表明,棉花生育期内各处理0~40 cm土层土壤含水率及地下5 cm处土壤温度总体上都随着灌溉水矿化度的增加而增大,但差异不大;处理间土壤电导率差异明显,灌溉水矿化度愈高,土壤电导率愈大,棉花生育期结束后,降雨对各处理盐分的淋洗率介于29.40%~40.40%。土壤水分和盐分剖面分布受制于土壤质地、降雨和棉花蒸发蒸腾耗水;干旱时期,土壤干燥,盐分表聚,湿润时期与之相反。棉花成苗率、株高、单株最大叶面积和霜前花率均随着灌溉水矿化度的增加而降低,籽棉产量从大到小依次为S2、S1、S3和S4,其中,S4与S1处理间的差异达显著水平。咸水灌溉通过改变马克隆值对纤维品质产生了负面影响,尤其是S4处理。研究结果可为丰富棉花咸水灌溉技术体系提供理论支撑。  相似文献   

7.
为探讨水、盐、氮三因素对棉花生长的耦合效应及最优水肥制度,分别设置了4种灌溉定额(1 575,2 100,2 625,3 150 m3/hm2)、4种施氮量(0,150,300,450 kg/hm2)和4种土壤盐分(非盐化土、轻度、中度和重度盐化土),通过盆栽试验,研究了水、氮、盐对膜下滴灌棉花产量的影响.结果表明:灌溉定额、施氮量和土壤盐分与棉花产量之间符合回归模型,模型对水氮盐的耦合效果较好;单因素对棉花产量影响按因素排序由大到小为灌水量,土壤含盐量,施氮量;耦合作用的影响按因素排序由大到小为盐氮,水氮,水盐;水氮施加量对棉花产量的影响均存在阈值,低于此阈值,棉花增产效果较为明显;中、重度土壤盐分含量明显抑制棉花生长;通过回归模型进行耦合分析,最适合研究区的水肥盐耦合方式为轻盐土壤、灌溉定额2 677 m3/hm2和施氮量202 kg/hm2.本研究将为盐碱区棉田水肥高效利用提供科学依据.  相似文献   

8.
不同滴灌方式下咸水灌溉对棉花根系分布的影响   总被引:7,自引:1,他引:6  
通过大田试验研究了不同滴灌方式利用咸水灌溉对棉花根系分布的影响。结果表明,2种滴灌方式下土壤中的水分和盐分在1 m土体内随土壤深度的增加和咸水浓度的增加而增加,且由于滴头的洗盐作用,地表滴灌和地下滴灌方式下土壤中的水盐分布深度均有所下移。正是由于水盐在土壤有这样的分布特征,2种滴灌方式下不同盐度咸水灌溉后,作物不仅可以感受到变化了的环境信息,而且自发地改变结构形态、空间构型,即增加根长、根干重、根半径以及根表面积,对盐胁迫做出适应性的根系形态变化。  相似文献   

9.
A 3-year project compared the operation of a subsurface drip irrigation (SDI) and a furrow irrigation system in the presence of shallow saline ground water. We evaluated five types of drip irrigation tubing installed at a depth of 0.4 m with lateral spacings of 1.6 and 2 m on 2.4 ha plots of both cotton and tomato. Approximately 40% of the cotton water requirement and 10% of the tomato water requirement were obtained from shallow (<2 m) saline (5 dS/m) ground water. Yields of the drip-irrigated cotton improved during the 3-year study, while that of the furrow-irrigated cotton remained constant. Tomato yields were greater under drip than under furrow in both the years in which tomatoes were grown. Salt accumulation in the soil profile was managed through rainfall and pre-plant irrigation. Both drip tape and hard hose drip tubing are suitable for use in our subsurface drip system. Maximum shallow ground water use for cotton was obtained when the crop was irrigated only after a leaf water potential (LWP) of −1.4 MPa was reached. Drip irrigation was controlled automatically with a maximum application frequency of twice daily. Furrow irrigation was controlled by the calendar.  相似文献   

10.
微咸水膜下滴灌对土壤盐分离子分布和番茄产量的影响   总被引:1,自引:0,他引:1  
为了探讨微咸水膜下滴灌对土壤盐分分布和番茄产量的影响,在内蒙古河套灌区进行了田间试验,共设置3种灌水处理:淡水灌水定额30 mm、微咸水灌水定额30 mm和微咸水灌水定额37.5 mm,每个处理重复3次,随机布置。结果表明:HCO_3~-、Cl~-、Na~+和K~+容易随水分移动,当微咸水灌水定额为37.5 mm时,淋洗效果最好;SO_4~(2-)、Ca~(2+)和Mg~(2+)与土壤胶体吸附力较强,不易随水分运动,淋洗效果不明显;在番茄生育期结束后需要秋季或来年春季汇水洗盐,防止微咸水灌溉后引起的盐碱危害;微咸水灌溉相比淡水灌溉的灌水定额要增大1/4左右。  相似文献   

11.
Two field studies were conducted on the west side of the San Joaquin Valley of California to demonstrate the potential for integrated management of irrigation and drainage systems. The first study used a modified cotton crop coefficient to calculate the irrigation schedule controlling the operation of a subsurface drip system irrigating cotton in an area with saline groundwater at a depth of 1.5 m. Use of the coefficient resulted in 40% of the crop water requirement coming from the groundwater without a loss in lint yield. The second study evaluated the impact of the installation of controls on a subsurface drainage system installed on a 65 hectare field. As a result of the drainage controls, 140 mm less water was applied to the tomato crop without a yield loss. A smaller relative weight of tomatoes classified as limited use, was found in the areas with the water table closest to the soil surface.  相似文献   

12.
The increasing demand for irrigation water to secure food for growing populations with limited water supply suggests re-thinking the use of non-conventional water resources. The latter includes saline drainage water, brackish groundwater and treated waste water. The effects of using saline drainage water (electrical conductivity of 4.2–4.8 dS m−1) to irrigate field-grown tomato (Lycopersicon esculentum Mill cv Floradade) using drip and furrow irrigation systems were evaluated, together with the distribution of soil moisture and salt. The saline water was either diluted to different salinity levels using fresh water (blended) or used cyclically with fresh water. The results of two seasons of study (2001 and 2002) showed that increasing salinity resulted in decreased leaf area index, plant dry weight, fruit total yield and individual fruit weight. In all cases, the growth parameters and yield as well as the water use efficiency were greater for drip irrigated tomato plants than furrow-irrigated plants. However, furrow irrigation produced higher individual fruit weight. The electrical conductivity of the soil solution (extracted 48 h after irrigation) showed greater fluctuations when cyclic water management was used compared to those plots irrigated with blended water. In both drip and furrow irrigation, measurements of soil moisture one day after irrigation, showed that soil moisture was higher at the top 20 cm layer and at the location of the irrigation water source; soil moisture was at a minimum in the root zone (20–40 cm layer), but showed a gradual increase at 40–60 and 60–90 cm and was stable at 90–120 cm depth. Soil water content decreased gradually as the distance from the irrigation water source increased. In addition, a few days after irrigation, the soil moisture content decreased, but the deficit was most pronounced in the surface layer. Soil salinity at the irrigation source was lower at a depth of 15 cm (surface layer) than that at 30 and 60 cm, and was minimal in deeper layers (i.e. 90 cm). Salinity increased as the distance from the irrigation source increased particularly in the surface layer. The results indicated that the salinity followed the water front. We concluded that the careful and efficient management of irrigation with saline water can leave the groundwater salinity levels unaffected and recommended the use of drip irrigation as the fruit yield per unit of water used was on average one-third higher than when using furrow irrigation.  相似文献   

13.
滴灌条件下排水暗管间距对土壤盐分淋洗的影响   总被引:7,自引:0,他引:7  
在滴灌淋洗条件下设计暗管排水试验,研究暗管不同埋设间距(15、20、25 m)对土壤剖面盐分分布及脱盐淋洗效果的影响。结果表明:滴灌淋洗期间,0~70 cm土层含盐量显著降低,与CK相比,试验地不同地段土壤平均含盐量减少10 g/kg以上。从暗管上方至相邻暗管中点位置处不同剖面土壤平均脱盐率逐渐减小,15、20、25 m间距小区在0~100 cm埋深土壤中点位置处最大脱盐率分别为84.01%、77.75%、73.98%,土壤整体脱盐率介于51.82%~60.43%之间。吸水管埋管间距越小,小区暗管排水阶段排水流量越大,排水矿化度、电导率也越大,但成本会略高。15 m间距相比20、25 m间距小区每公顷多投入的成本和平均脱盐率差值分别为8 430、12 570元和4.78%、8.61%;15 m间距暗管处理在水平距离暗管0、5、7.5 m处土壤脱盐率最大值分别为86.47%、85.15%、84.01%,且排水期间排水流量、矿化度、电导率最大,分别为2 m~3/h、189.15 g/L和35.9 mS/cm;土壤盐分淋洗效果优于20、25 m间距小区,淋洗相同盐分含量土壤所需灌水量也低于20、25 m间距;2次灌水后0~70 cm土层盐分整体已降至10 g/kg以下,作物生长条件大为改善,适宜作为指导新疆盐渍土改良滴管条件下暗管间距布设参数的依据。  相似文献   

14.
The primary objective of an agriculture water management system is to provide crop needs to sustain high yields. Another objective of equal or greater importance in some regions is to reduce agriculture impacts on surface and groundwater quality. Kandil et al. (1992) modified the water management model DRAINMOD to predict soil salinity as affected by irrigation water quality and drainage system design. The objectives of this study are to incorporate an algorithm to quantify the effects of stresses due to soil salinity on crop yields and to demonstrate the applications of the model. DRAINMOD-S, is capable of predicting the long-term effects of different irrigation and drainage practices on crop yields. The overall crop function in the model includes the effects of stresses caused by excessive soil water conditions (waterlogging), soil water-deficits, salinity, and planting delays. Three irrigation strategies and six drain spacings were considered for all crops. In the first irrigation strategy, the irrigation amounts were equal to evapotranspiration requirements by the crops, with the addition of a 10 cm depth of water for leaching applied during each growing season. In the second strategy, the leaching depth (10 cm) was applied before the growing season. In the third strategy, a leaching depth of 15 cm was applied before the growing season for each crop. Another strategy (4th) with more leaching was considered for bean which is the crop most sensitive to salinity. In the fourth strategy, 14 days intervals were used instead of 7 and leaching irrigations were applied: 15 cm before the growing season and 10 cm at the middle of the growing season for bean. The objective function for these simulations was crop yield. Soil water conditions and soil salinity were continuously simulated for a crop rotation of bean, cotton, maize, soybean, and wheat over a 19 years period. Yields of individual crops were predicted for each growing season. Results showed that the third irrigation strategy resulted in the highest yields for cotton, maize, soybean and wheat. Highest yields for bean were obtained by the fourth irrigation strategy. Results are also presented on the effects of drain depth and spacing on yields. DRAINMOD-S is written in Fortran and requires a PC with math-coprocessor. It was concluded that DRAINMOD-S is a useful tool for design and evaluation of irrigation and drainage systems in irrigated arid lands.  相似文献   

15.
棉田滴灌水盐模型及动态变化规律   总被引:1,自引:1,他引:0  
建立了棉田滴灌条件下土层盐分平衡方程,对不同盐渍程度的棉田土壤水盐动态变化进行了初步研究。结果表明,滴灌能够降低地下水和土壤中的总盐含量,使地下水中的总盐含量保持在3.0g/L左右,土壤中CI-和SO42-含量变化趋势和总盐含量变化一致;土壤含盐量主要集中土壤表层0~25cm,0~100cm土壤含盐量呈指数函数关系,经模型验证与实测值较为吻合;土壤的含盐量直接影响棉花的出苗率、生长发育和生理特性,进而影响棉花的产量和品质。研究为土壤盐碱化防治和棉田水分管理提供科学依据。  相似文献   

16.
为了确定微咸水膜下滴灌棉花适宜的灌水量和利用方式,通过测坑试验探讨了微咸水膜下滴灌灌水量以及利用方式对棉花根层土壤盐分及产量的影响,结果表明:微咸水膜下滴灌灌水量为525.00~675.00 mm时棉花根层周围盐分积累较少,灌水量为475.00~564.29 mm时棉花产量较高;比起采用3.00 g/L的微咸水直接灌溉,1.08 g/L的微咸水直接灌溉时根系层土壤积盐范围较小且棉花产量较高,其次为1.08 g/L与3.00 g/L的微咸水轮灌。最后综合考虑确定出微咸水膜下滴灌棉花适宜的灌水量范围为525.00~564.29 mm,在淡水资源比较缺乏或没有淡水资源而微咸水资源较丰富的地区,可以考虑采用低矿化度的微咸水直接灌溉或将低矿化度与高矿化度的微咸水进行轮灌。  相似文献   

17.
为研究新疆绿洲区盐碱地应用膜下滴灌技术是否对荒地土壤盐分质量比及组成产生影响,以新疆典型盐碱绿洲区域(玛纳斯河流域下野地灌区)膜下滴灌棉田之间荒地为例,通过2009—2013年的定点监测,分析了年际间0~140 cm土层盐分及盐分离子变化.研究结果表明受滴灌棉田灌溉影响,地下水位提升以及地下水矿化度增加,造成新疆绿洲盐碱滴灌区域荒地土壤盐分在4月中旬至10月中旬的增加量大于10月中旬至翌年4月中旬的降低值,盐分和SO2-4,Cl-,Mg2+,Ca2+,Na+以及Cl-/SO2-4和钠离子吸附比都在逐年递增;荒地土壤碱度逐年提升,阴阳离子组成也在逐年变化,但试验期间内研究区域荒地盐碱土类型一直属于氯化物-硫酸盐盐土.滴灌技术在绿洲区推广后,区域内的荒地成为农田排出盐分重要的聚集场所之一.  相似文献   

18.
内蒙古河套灌区咸水灌溉的环境效应分析   总被引:1,自引:0,他引:1  
研究了咸水灌溉对土壤水盐动态、地下水位、地下水质、作物生长及产量的影响。灌溉水源为黄河水和高矿化度地下水混合。咸水灌溉期间,土壤盐分有所增加,通过控制咸水灌溉定额,以及进行合理的黄河水秋浇灌溉,可以达到年度内土壤盐分动态平衡。咸水灌溉条件下,作物长势及产量基本不受影响。适宜合理的咸水灌溉不会造成环境恶化,而且对缓解河套灌区水资源紧张的矛盾有着重要意义。  相似文献   

19.
新疆气候干旱与土壤盐碱化并存,是制约新疆农业发展的主要因素,开沟覆膜滴灌技术综合了膜下滴灌技术与开沟技术的优点,理论上可有效治理盐碱地。在开沟覆膜滴灌技术下,设置不同灌水定额与灌水次数,利用试验土槽模拟盐分调控规律,结果表明:1第1次合适灌水定额对盐分的淋洗起主要作用,可使土体盐分达到较稳定的状态,盐分也随水分侧向运移,并在土埂表层聚集;2灌水定额的增加促进盐分随水分向远离滴头和向深层方向运移,使得覆膜间、覆膜边盐分淋洗的深度增加,脱盐区增加;3在灌水定额为300m3/hm2时,可以在滴灌带横向0~23cm,下部58cm处迅速形成一个含盐量小于1.5%的达标脱盐区,满足当地作物正常出苗,故建议当地可选择300m3/hm2作为第1次灌水洗盐定额。  相似文献   

20.
棉花滴灌田间盐分变化规律的初步研究   总被引:17,自引:3,他引:17  
以田间实验为基础对棉花滴灌土壤盐分的变化规律进行了分析研究。结果表明:滴灌为浅灌且可控性强,不会产生深层渗漏,土壤含盐量在整个滴灌期较低。盐分在空间的分布主要受蒸发和湿润区范围的影响,灌水量的增加有助于土壤脱盐。这些结果对在生产实践中控制滴灌水量和治理盐碱具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号