首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper describes how the characteristics of shear-horizontal type piezoelectric boundary acoustic waves (PBAWs) change with combination of different overlay and metal grating materials. It is shown that PBAWs are supported in various structures provided that highly piezoelectric material(s) are employed as structural member(s). For verification, numerical simulation of different material combinations is done. The results are in good agreement with the qualitative prediction. That is, large electromechanical coupling factor K2 is obtainable when materials having small mass densities shear modulus c44 and shear velocity VBS; and materials having extremely large shear modulus c44 are chosen, respectively, for overlay and metallic grating. When YX-LiNbO3 is assumed as a substrate, for example, the best choice seems to be SiO2 and Au for overlay and metallic grating, respectively. Although metals with extremely large ρ and c44 such as W and Ta offer large K2, they may not be acceptable for practical PBAW applications because of their large electric resistivity.  相似文献   

2.
The mechanism of SAW transformation with variation of film thickness is investigated in a piezoelectric substrate with a metal grating overlaid by a dielectric film, via simulation and visualization of the acoustic fields. By way of example, two orientations of lithium niobate substrates are analyzed, YX-LN and 128°YX-LN, with a Cu grating and an isotropic silica glass overlay. The motions, which follow the wave propagation in the sagittal plane, are visualized within two periods of the grating, with added contour plots showing the shear horizontal displacements. The continuous transformation of the wave's nature is investigated for each wave propagating in the analyzed material structures when the film thickness is increased from zero to a few wavelengths. The examples of the SAW transformation into boundary waves and into plate modes of different polarization have been found and investigated. The behavior of the SAW characteristics in the grating is correlated with transformation of the wave structure with increasing overlay thickness.  相似文献   

3.
In this paper we describe a method to assess the piezoelectric response of a piezoelectric thin film deposited on a conductive substrate. It is based on analyzing the frequency response of a surface acoustic wave (SAW) filter made on the piezoelectric thin film. For this analysis, we use a circuital model that takes into account the theoretical response of the ideal filter along with all the external and internal parasitic effects that deteriorate the response. Using this model, we can obtain the electromechanical coupling factor of the piezoelectric material (k2 m) with good accuracy. If parasitic effects are not considered, k2 m can be underestimated by a factor of up to 20. We have tested our model using SAW filters made on AlN thin films sputtered on substrates with different conductivities. A discussion on the relation between the different circuital elements and the physical properties of the filters also is provided.  相似文献   

4.
We prepared standard specimens for the line-focus-beam ultrasonic material characterization system to obtain absolute values of the propagation characteristics (phase velocity and attenuation) of leaky surface acoustic waves (LSAWs). The characterization system is very useful for evaluating and analyzing specimen surfaces. The calibration accuracy of these acoustic parameters depends on the accuracy of acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) determined for standard specimens. In this paper, we developed substrates of non piezoelectric single crystals (viz., gadolinium gallium garnet [GGG], Si, and Ge) and an isotropic solid (synthetic silica [SiO2] glass) as standard specimens. These specimens can cover the phase velocity range of 2600 to 5100 m/s for Rayleigh-type LSAWs. To determine the elastic constants with high accuracy, we measured velocities by the complex-mode measurement method and corrected diffraction effects. Measurements of bulk acoustic properties (bulk wave velocity and density) were conducted around 23°C, and bulk wave velocities were obtained with an accuracy of within ±0.004%. We clearly detected differences in acoustic properties by comparing the obtained results with the previously published values; the differences were considered to be due to differences of the specimens used. We also detected differences in acoustic properties among four SiO2 substrates produced by different manufacturers  相似文献   

5.
Lead-free piezoelectric ceramics KNN modified by Li-substitution and CuO addition have been synthesized, and the piezoelectric and dielectric properties were measured. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was formed with Li-substitution. The co-doping of Li and Cu markedly enhanced the mechanical quality factor (Qm) in comparison with the sole doping of Li and Cu. Anomalous anti-ferroelectric-like hysteresis curves were observed in 2 mol% CuO-doped ceramics. The anti-ferroelectric-like curves were changed to that of normal ferroelectrics following poling. A model based on the formation of the internal bias field (Ei) due to the movements of space charges was proposed to explain these phenomena. It was considered that the Ei stabilized the spontaneous polarization (Pa) and suppressed the domain wall motion to enhance the Qm. The highest Qm obtained in this study was 742. The [(Na0.5K0.5)0.96Li0.04] NbO3 + 0.45 mol% CuO ceramics showed a high Qm value of 414 with a high piezoelectric constant d33 of 100 pC/N.  相似文献   

6.
提出了一种基于压电效应制备柔性电子皮肤的简单方法。为了研究纳米改性对柔性电子皮肤各层性能的影响,首先以纳米SiO2粒子作为改性体,以聚二甲基硅氧烷(PDMS)作为基体,制备出SiO2/PDMS复合柔性衬底,解决了在PDMS上磁控溅射沉积电极材料产生裂纹的现象,成功获得能够稳定工作的柔性电极。然后用钛酸钡/碳纳米管/聚二甲基硅氧烷(BaTiO3/CNTs/PDMS)复合材料作为功能层,制备出一种五层结构的高灵敏性柔性电子皮肤,并找到一种通过改变基板粗糙度的简单方法构建电极与介电层的褶皱接触,进而提升柔性电极的电导率与柔性电子皮肤的压电响应信号。   相似文献   

7.
The ternary system of j/BiGaO3-(1-x-y) BiScO3-xPbTiO3 (BGS-PT) ceramics was prepared by using conventional mixing oxide processing. X-ray diffraction analysis revealed that the BGS-PT ceramics showed the perovskite structure. The Curie temperature (TC) of BGS-PT ceramics was found to increase with increasing BiGaO3 content. However, a larger BiGaO3 content led to sharply decreased piezoelectric properties, and the secondary phase was formed in the BGS-PT system. BGS-PT ceramics with x = 0.56, y = 0.19 showed a high Curie temperature TC and a large piezoelectric constant d33 of 501degC and 152 pC/N, respectively. The high TC of BGS-PT ceramics with usable piezoelectric properties suggests future high-temperature applications.  相似文献   

8.
The structures of intermetallic alloy layers formed during immersion of H13 tool steel into an aluminium die casting alloy melt have been studied by X-ray diffraction. Energy dispersive spectroscopy (EDS) analysis on the intermetallic phases was also conducted. A thick composite layer away from the H13 steel substrate consisted of irregular intermetallics and solidified cast alloy. A thin intermetallic layer was present between the thick composite layer and an inner compact layer next to the steel substrate. The intermetallic phase in the composite layer was found to have a cubic structure, bcc-(FeSiAlCrMnCu). The thin layer was identified to be structurally isomorphous with hexagonal H-Fe2SiAl8. The compositional difference between H and bcc intermetallic phases was mainly that the latter consisted of a higher amount of Cr+Mn+Cu. This is consistent with the suggestion that chromium, manganese and copper stabilise bcc phase at the expense of H phase. The inner compact layer next to the steel substrate was identified to be isomorphous with orthorhombic η-Fe2Al5.  相似文献   

9.
This paper describes the existence of piezoelectric boundary acoustic wave (PBAW) propagating in a Cu electrode/Y-cut X-propagating (YX) LiNbO(3) substrate structure partially covered with a SiO2 layer. In the analysis, two types of structures are taken into consideration: one is the so-called slotted structure with SiO2 pillars placed in the grating slots; the other is the so-called topped structure with SiO(2) pillars placed on the top of grating electrodes. The top surface could be fully covered with an additional layer (like epoxy) to bridge the grating slots for encapsulation. Results show that SH-type PBAW begins to propagate in the slotted structure when the SiO(2) thickness exceeds 0.3 wavelength. Strong electromechanical coupling factor K(2) of 21%, and temperature coefficient of velocity (TCV) of -33 ppm/°C are obtained. In the topped structure, on the other hand, the boundary acoustic wave mode is not supported. Instead, the thickness resonance modes in the SiO2 pillar do exist. Comparison of the obtained results with those in the structure fully covered with the SiO(2) layer indicates that, as for the PBAW mode, the slotted structure offers improved K(2) but with worse TCV compared with the fully covered SiO(2) structure.  相似文献   

10.
Properties and applications as a pH sensor of Y2O3-doped CeO2 films prepared by r.f. magnetron sputtering were studied. The CeO2-Y2O3 films exhibited higher electric conductivity than yttria-stabilized zirconia. Films deposited on an MgO single-crystal (100) substrate without substrate heating had a more dense structure. The microstructure of the samples deposited at a substrate temperature of 873 K was shown to be columnar by scanning electron microscope. X-ray diffraction studies showed that a (111) diffraction peak assigned to CeO2 was much greater and the films exhibited preferential orientation to the (111) plane with increasing r.f. power or substrate temperature. The pH electrode was made by a double layer of Y2O3-doped CeO2 and Cu/Cu2O redox films deposited onto the MgO substrate. pH response was measured in various pH buffer solutions at room temperature. It showed good agreement with a nernstian response in the pH range 9–13.  相似文献   

11.
铅基复合钙钛矿铁电材料广泛应用于机电传感器、致动器和换能器。二元铁电固溶体Pb(Ni1/3Nb2/3)O3- PbTiO3(PNN-PT)由于其在准同型相界(MPB)区域具有优异的压电、介电性能而备受关注。然而较大的介电损耗和较低的居里温度限制了其在高温高功率器件方面的应用。本研究通过引入Pb(In1/2Nb1/2)O3 (PIN)作为第三组元改善PNN-PT的电学性能, 提高其居里温度; 通过两步法合成了MPB区域的三元铁电陶瓷Pb(In1/2Nb1/2)O3- Pb(Ni1/3Nb2/3)O3-PbTiO3 (PIN-PNN-PT), 研究了其结构、介电、铁电和压电性能。制备的所有组分陶瓷具有纯的钙钛矿结构。随着PT含量的增加, 陶瓷结构从三方相转变为四方相。通过XRD分析得到了室温下PIN-PNN-PT体系的MPB相图。体系的居里温度由于PIN的加入得到了很大的提高, 更重要的是PIN的引入降低了PNN-PT体系的介电损耗和电导。MPB处的组分展现出了优异的电学性能, 室温下, 性能最优组分为0.30PIN-0.33PNN-0.37PT: d33=417 pC/N, TC=200 ℃, ε′= 3206, tanδ=0.033, Pr=33.5 μC/cm2, EC=14.1 kV/cm。引入PNN-PT的PIN第三组元使得体系的居里温度和压电性得到提高的同时降低了的介电损耗和电导率, 因此, PIN-PNN-PT三元铁电陶瓷在高温高功率换能器等方面具备一定的应用潜力。  相似文献   

12.
The heteroepitaxially grown yttrium oxide layer by an ionized cluster beam (ICB) on a Si(100) substrate was investigated by Rutherford backscattering spectrometry (RBS)/channeling. The channeling minimum value (χmin) of the Y2O3 layer on Si(100) is 0.28, and this is the smallest value among those reported. From the channeling polar plots, it is found that Y2O3 film grown on Si(100) oriented with (110) direction and has a double domain structure. The 110 axis of Y2O3 layer is exactly parallel to the 100 axis of the Si substrate. It is also observed that the interface region of Y2O3 film has more crystalline defects than the surface region.  相似文献   

13.
Preparation of (001)-oriented Pb(Zr,Ti)O3 (PZT) thin films and their applications to a sensor and actuators were investigated. These thin films, which have a composition close to the morphotropic phase boundary, were epitaxially grown on (100)MgO single-crystal substrates by RF magnetron sputtering. These (001)-oriented PZT thin films could be obtained on various kinds of substrates, such as glass and Si, by introducing (100)-oriented MgO buffer layers. In addition, the (001)-oriented PZT thin films could be obtained on Si substrates without buffer layers by optimizing the sputtering conditions. All of these thin films showed excellent piezoelectric properties without the need for poling treatment. The PZT thin films on the MgO substrates had a high piezoelectric coefficient, d31, of -100 pm/V, and an extremely low relative dielectric constant, epsivr, of 240. The PZT thin films on Si substrate had a very high d31 of -150 pm/V and an epsivr = 700. These PZT thin films were applied to an angular rate sensor with a tuning fork in a car navigation system, to a dual-stage actuator for positioning the magnetic head of a high-density hard disk drive, and to an actuator for an inkjet printer head for industrial on-demand printers.  相似文献   

14.
E. Knoll  H. Bialas 《Thin solid films》1994,250(1-2):42-46
Usually copper grows on c-sapphire with orientation Cu(111)Al2O3(0001) with Cu[2 ] along Al2O3[2 0]. In the present work an additional orientation is described. To understand this orientation, a microscopic model of roughness of the substrate crystal is proposed and verified.  相似文献   

15.
Because of more and more stringent requirements on SAW filter performances, it is important to compute, with very good accuracy, the SAW propagation characteristics, which include the calculation of reflection and scattering parameters. For that reason, the analysis of periodic structures on a semi-infinite piezoelectric substrate is one of the most important problems being investigated by SAW researchers. For infinite periodic grating modeling, we developed numerical mixed FEM/BEM (finite element method-boundary element method) models using an efficient interpolation basis function that takes into account the singularity at both edges of each electrode. In this paper, a review of the numerical program that has been developed during the past few years will be presented. For an infinite periodic grating, it is convenient to solve the propagation problem in the Fourier domain (wave number space and harmonic excitation), and important efforts have been spent to properly integrate the so-called periodic harmonic Green function. Using this numerical model together with the general P-matrix formalism, it is possible to compute all of the basic parameters with a very good accuracy. These consist of the single strip reflectivity, acoustic wave-phase velocity, and position offset between reflection and transduction centers. Simulations and comparisons with experiments are shown for each model  相似文献   

16.
A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut 〈110〉-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 μm and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K2 and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the 〈110〉 propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the 〈100〉 direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values  相似文献   

17.
This paper describes the characterization of SAW propagation in layered substrate and overlayered structures. The software based on the finite element method and spectral domain analysis was newly developed and applied to the characterization of SAW propagation under an infinitely-long Al interdigital transducer on a rotated Y-cut LiTaO3/sapphire substrate. Because of the finite LiTaO3 thickness, a series of spurious resonances appears. It is shown that the excitation strength of the spurious resonances changes with frequency as well as the rotation angle, which reflects the frequency and rotation angle dependence of the energy leakage. Next, the analysis was carried out for SAWs propagating in a SiO2 layer/Al IDT/42°YX-LiTaO3 structure. It is shown that the influence of the SiO2 layer is significantly dependent on the location where the SiO2 layer is deposited. In particular, it is shown that when the SiO2 layer is deposited only on top of the electrodes, the SAW reflectivity increases compared with when the SiO2 layer is deposited between and on top of electrodes.  相似文献   

18.
We have made a study of the chemical composition, the electrical, the optical and the structural properties of polycrystalline CuInS2 thin films prepared by spray pyrolysis to be used for thin film solar cells. These films were deposited starting from aqueous solutions with different chemical compositions ([Cu]/[In] and [S]/[Cu] ratios) and at different substrate temperatures. In all cases, the material is p-type with grains preferentially oriented in the (112) direction of the sphalerite structure. The electro-optical properties show a very strong dependence on the [Cu]/[In] ratio in the solution. Films with copper excess have smaller resistivity and better crystallinity than those which are stoichiometric or have indium excess. The results obtained in this work show the possibility of having CuInS2 thin films with a wide range of resistivity, a fact that could be important for making solar cells based on this material.  相似文献   

19.
Propagation characteristics of Rayleigh-type wave in a piezoelectric layered system are theoretically investigated. The piezoelectric layer is considered as a cubic crystal with finite thickness rotated about Y-axis and is imperfectly bonded onto a semi-infinite dielectric substrate. The imperfect interface between the two constituents is assumed to be mechanically compliant and dielectrically weakly conducting. The exact dispersion relations for electrically open or shorted boundary conditions are obtained. The numerical results show that the phase velocity of Rayleigh-type wave is symmetric with respect to the cut orientation of 45。 and can achieve the maximum propagation speed in this orientation. The mechanical imperfection plays an important role in the dispersion relations, further the normal imperfection can produce a significant reduction of phase velocity comparing with the tangential imperfection. Comparing with the mechanical imperfection the electrical imperfection makes a relatively small reduction of phase velocity of Rayleigh-type wave. The obtained results can provide some fundamentals for understanding of piezoelectric semiconductor and for design and application of piezoelectric surface acoustic wave devices.  相似文献   

20.
A numerical approach that combines the finite-element method (FEM) and the analytical method is discussed. To treat a large periodic structure in which a repetition of complicated components arises, the substructure method is introduced. As a result, the mutual interaction between surface waves and bulk waves is automatically taken into account over the entire discontinuity region. In addition, the FEM with Hermitian line elements is introduced to compute the propagation constants and field distributions of propagating modes in uniform piezoelectric waveguides that are needed for constructing analytical solutions. To show the validity and usefulness of this approach, examples for various metallic gratings on 128 degrees Y-X LiNbO(3) substrate are computed. The computed results are in approximate agreement with the earlier experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号