首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z.M. Wang 《Corrosion Science》2010,52(4):1342-1350
A model metallic glass Ni50Nb50, which would undergo a polymorphous transformation during devitrification, was selected to clarify the correlation of amorphous structure with corrosion. The electrochemical polarization behaviour, film breakdown and composition of surface film have been studied in detail by comparing the amorphous alloy with its crystalline counterparts. Interestingly, it was found that the pit initiation is inhibited greatly on amorphous sample relative to the crystallized one. The origin is thought to be related to the defective interface beneath passive film that inhibits the formation of pitting precursors in corrosion.  相似文献   

2.
M.H. Moayed 《Corrosion Science》2006,48(11):3513-3530
This paper deals with the effect of adding sulfate on the critical pitting temperature (CPT) of highly alloyed austenitic stainless steel. A large number of potentiodynamic CPT measurements and potentiostatic current-time curves were obtained in 1 M NaCl containing 0, 0.2, 0.5 and 0.75 M Na2SO4. Provided the CPT is defined as the first temperature where stable pitting occurs at intermediate potentials, such as 600 mV (Ag/AgCl), addition of sulfate is shown to have the unexpected effect of lowering the CPT. The growing pits formed in sulfate-containing solution passivate anodically as the potential is increased, perhaps via salt precipitation. The effect of sulfate on pitting kinetics was studied using 50 μm-dia. 302SS wire in 1 M NaCl and 1 M NaCl + 0.5 M Na2SO4 at 40 °C. Sulfate increases the critical concentration of metal salt in the pit, expressed as a fraction of the saturation concentration, that is required to sustain pit dissolution. Provided this fraction does not exceed 100% of saturation, passivation is enhanced just inside the pit rim, allowing earlier undercutting of the metal surface and a finer pore structure in the lacy metal cover over the pit. The pitting potential measured above the CPT is increased by sulfate addition, but the CPT itself is lowered. Related examples are cited where pitting shows an unusual dependence on some variable such as anion concentration or temperature.  相似文献   

3.
A newly synthesized glycine derivative (termed GlyD), 2-(4-(dimethylamino)benzylamino)acetic acid hydrochloride, was used to inhibit uniform and pitting corrosion processes of Al in 0.50 M KSCN solutions (pH 6.8) at 25 °C. For uniform corrosion inhibition study, Tafel extrapolation, linear polarization resistance and impedance methods were used, complemented with SEM examinations. An independent method of chemical analysis, namely ICP-AES (inductively coupled plasma atomic emission spectrometry) was also used to test validity of corrosion rate measured by Tafel extrapolation method. GlyD inhibited uniform corrosion, even at low concentrations, reaching a value of inhibition efficiency up to 97% at a concentration of 5 × 10−3 M. Results obtained from the different corrosion evaluation techniques were in good agreement. This new synthesized glycine derivative was also used to control pit nucleation and growth on the pitted Al surface based on cyclic polarization, potentiostatic and galvanostatic measurements. The pitting potential (Epit) and the repassivation potential (Erp) increased by the addition of GlyD. Thus GlyD suppressed pit nucleation and propagation. Nucleation of pit was found to take place after an incubation time (ti). The rate of pit nucleation and growth decreased with increase in inhibitor concentration. Morphology of pitting was also studied as a function of the applied anodic potential and solution temperature. Cross-sectional view of pitted surface revealed the formation of large distorted hemispherical and narrow deep pits. GlyD was much better than Gly in controlling uniform and pitting corrosion processes of Al in these solutions.  相似文献   

4.
SCC in turbine disc steels exposed to simulated steam-condensate tends to nucleate preferentially from corrosion pit precursors. The evolution of these cracks is not straightforward and not well understood. In this work, unique three-dimensional X-ray microtomographic images have confirmed that cracks develop predominantly at the shoulder of the pit, near the pit/surface interface, for specimens stressed to 50–90% σ0.2. In support of this observation, FEA of model pits indicate that strain is a maximum on the pit wall just below the pit mouth. Implications of these observations for the pit-to-crack transition and predictive-modelling of crack nucleation and growth are discussed.  相似文献   

5.
Directionally solidified Si–TaSi2 eutectic composite is selectively etched to fabricate well aligned TaSi2 tip array for field emission application. The effect of etching parameters on TaSi2 tip structure, and its corrosion behaviour in HNO3/HF solution are investigated. At the optimised condition (HNO3/HF = 5 for 50 min), sharp TaSi2 tips with curvature radius of 18 nm and homogenous distribution are obtained, which greatly improves the figure of merit associated with field emission current. The TaSi2 fibre presents smaller dissolution rate in the HNO3/HF solution than Si matrix. The formation mechanism of etching pit on the Si matrix surface is also discussed.  相似文献   

6.
Y. Sun 《Corrosion Science》2010,52(8):2661-4290
The electrochemical corrosion behaviour of the carburised (expanded austenite) layer on 316L austenitic stainless steel produced by low temperature plasma carburising has been studied in 0.5 M NaCl and 0.5 M HCl + 0.5 M NaCl solutions. The present work focuses on the variation of the corrosion behaviour of the carburised layer with depth from the surface and the effect of carbon concentration on electrochemical behaviour. The results show that the carburised layer has excellent resistance to localised corrosion. There exists a critical carbon concentration, above which the expanded austenite possesses excellent resistance to both metastable pit formation and pit growth.  相似文献   

7.
Pulse electrodeposition was used to synthesize nanocrystalline (NC) zinc coatings from citric acid bath. The electrochemical behaviour of the NC zinc coatings was investigated by using potentiostatic and potentiodynamic polarization methods in 0.5 mol/L NaCl (pH = 12) solution and compared with that of cast zinc. Pitting corrosion behaviour was characterized by pitting potential, induction time and stable pit growth rate which were analyzed according to statistical method. The results showed that nanocrystallization increased the sensitivity of Epit refer to potential sweep velocity, changed the type of the pit generation from B1 (parallel) to B2 (series), accelerated the pitting initiation process and inhibited the stable pit growth process of NC zinc.  相似文献   

8.
S. Ono  H. Habazaki 《Corrosion Science》2009,51(10):2364-2370
Pit propagation on high purity aluminium electrode in 2 M HCl solutions with and without H2SO4 under an alternating current (AC) has been examined. Pit development and potential transients were dependent on the H2SO4 concentration. In the sulfate-free etchant, most pits developed from the pretreated surface, with little tendency to form clusters of pits. With increasing H2SO4 concentration the size of the pit clusters increased. There is an optimal H2SO4 concentration, which is 0.01 M H2SO4 in this study, to form a deep etched layer of uniform thickness with high surface area. At H2SO4 concentrations higher than 0.01 M, the pit propagation proceeded on limited foil surface sites and deep etched regions were formed locally, since sulfate ions assisted passivation and reduced the number of pit nucleation sites on foil surface. Analysis of potential transients during the anodic half-cycle supports the hypothesis that sulfate ions retarded the pit nucleation.  相似文献   

9.
Three dosages of ions are evaluated as corrosion inhibitors of copper in artificial tap water by measuring the corrosion potential, polarization resistance, electrochemical impedance and reflectance spectra. The water is moderately hard, highly carbonated and chloride-rich. The results show that the surface film is composed by Cu2O. When the inhibiting agent is added, the film becomes thicker, denser and more compact. This behaviour is attributed to CuO incorporating into the passive layer. The optimal dosage of inhibitor is 10 mg l−1 P when the polarization resistance increases three times. The inhibitor retards the pit initiation, without hindering pit growth.  相似文献   

10.
Mn and Mo were introduced in AISI 304 and 316 stainless steel composition to modify their pitting corrosion resistance in chloride-containing media. Corrosion behaviour was investigated using gravimetric tests in 6 wt.% FeCl3, as well as potentiodynamic and potentiostatic polarization measurements in 3.5 wt.% NaCl. Additionally, the mechanism of the corrosion attack developed on the material surface was analysed by scanning electron microscopy (SEM), X-ray mapping and energy dispersive X-ray (EDX) analysis. The beneficial effect of Mo additions was assigned to Mo6+ presence within the passive film, rendering it more stable against breakdown caused by attack of aggressive Cl ions, and to the formation of Mo insoluble compounds in the aggressive pit environment facilitating the pit repassivation. Conversely, Mn additions exerted an opposite effect, mainly due to the presence of MnS inclusions which acted as pitting initiators.  相似文献   

11.
S. Ono  H. Habazaki 《Corrosion Science》2011,53(11):3521-3525
The pit growth process on (1 0 0) aluminium under anodic pulse current in a mixed solution of 1 M HCl and 0.1 M H2SO4 at 30 °C has been evaluated using potential transient measurements and pit size distributions obtained by scanning electron microscopy. Sustained pit growth is observed for all pits during the initial anodic potential rise before reaching a steady-state etch potential, whereas a substantial fraction of the pits passivate at the steady-state etch potential. The pit growth rate during the initial potential rise is 3.4 μm s−1, which is similar to that at the steady-state etch potential. The growth rates of active pits are potential-independent.  相似文献   

12.
P. Ernst 《Corrosion Science》2007,49(9):3705-3715
We correlate the effect of high chloride concentration on the critical pitting temperature (CPT) of type 316L stainless steel with its effect on the critical pit solution chemistry as determined by the artificial pit technique. It is shown that the change in CPT with bulk chloride concentration (0.5-9 mol kg−1) can be correlated with a change in the ratio of C/Cs, where C is the critical dissolved alloy cation concentration to sustain pitting, and Cs is the solubility of FeCl2 at the pit surface. A complicating factor is that natural pits can only grow with C = Cs at the lower chloride concentrations, but can grow without the salt film at very high chloride concentrations; this transition is believed to occur close to 5 or 6 m bulk chloride concentration. The dependence of Cs on bulk chloride concentration is given a new interpretation based on a common-ion effect operating within an altered local chemistry with complexation.  相似文献   

13.
Long-term laboratory exposure tests for various Cr and Ni content steels and Ni-base alloys were conducted at 650 °C in a 60vol.%CO-26%H2-11.5%CO2-2.5%H2O gas mixture simulating syngas environments. Upon isothermal heating, alloys with 15% and 20% Cr had many pits on the surface after a brief exposure, while no pit was found on alloys containing of 60% Ni and more than 23% Cr exposed for up to 5000 h. The thermal cycling accelerated pit initiation drastically, resulting that all test specimens except 30%Cr-60%Ni alloy suffered from metal dusting. From a measurement of pit depths, Ni proved to be an effective alloying element to retard the pit growth: growth rate for 75% Ni alloy has achieved double-digit decrease compared to that for 20% Ni. Microscopic observations has revealed that platelet graphite aligned perpendicular at the boundary of gas/metal of pits. The length of the platelet graphite for high Ni alloys was appreciably longer than that for low Ni steels. This can be interpreted from the difference of super saturation of carbon.  相似文献   

14.
As pitting is a random phenomenon, it is difficult to predict where a pit will appear on the surface and consequently the use of local probes is rendered difficult. In this work, a new method to study pitting corrosion on a MnS inclusion on 316L stainless steel is proposed. It consists in modifying locally the chemistry in its vicinity by injecting with a microcapillary an aggressive solution of NaCl, H2SO4 or HCl. Once a pit appears, scanning vibrating electrode technique (SVET) is used to follow the current fluctuations over and around the pit when the metal is polarized at a passive potential. In another series of experiments the effect of local activation of MnS inclusion was studied ex-situ using Auger electron spectroscopy (AES) and atomic force microscopy. It is observed that a single pit can be initiated only when hydrochloric acid is injected, whereas sulphuric acid only partially dissolved the inclusion. On another hand, the surface morphology is not affected when a sodium chloride solution is injected. A significant enrichment in sulphur is detected around the inclusion by AES, and micropits are observed in the metal at the edge of the inclusion after HCl activation. Anodic zones are detected by SVET around the inclusion, whereas a cathodic current flows from the inclusion. The anodic current is clearly ascribed to the breakdown of passivity induced by adsorbed sulphur coming from the MnS dissolution, whereas various assumptions can be proposed for the origin of the cathodic current.  相似文献   

15.
The localized attack of cobalt in bicarbonate aqueous solutions containing halide ions was investigated using electrochemical techniques, scanning electron microscopy, UV-visible and Raman spectroscopies. Rotating disc and rotating ring-disc electrodes were used to determine the effect of bicarbonate concentration, solution pH, nature and concentration of the halide ions, convection and potential sweep rate on the corrosion processes. These parameters were found to play a key role on the localized attack induced by halide ions by influencing the production of a Co(HCO3)2 precipitate on the pit surface. Potentiostatically generated cobalt oxide films (CoO and Co3O4) were found to be efficient to reduce pitting corrosion of cobalt.  相似文献   

16.
A corrosion mechanism has been developed to describe tubercle formation along pipeline steels during successive anaerobic–aerobic cycles. Small concentrations of O2 under nominally anaerobic conditions can lead to the separation of anodes and cathodes. Under subsequent aerobic conditions localized corrosion is then promoted by O2 reduction on the general magnetite-covered surface. Subsequently, the conversion of magnetite to maghemite passivates the general surface, and focuses corrosion within one major tubercle-covered pit. On switching from aerobic to anaerobic conditions, corrosion is temporarily supported by the galvanic coupling of lepidocrocite (γ-FeOOH) reduction (to γ-Fe-OH·OH) to steel dissolution primarily within the tubercle-covered pit.  相似文献   

17.
The anodic behaviour of Al in gluconic acid (HG) solutions was studied. Al was found to pit in such solutions. Surface and cross-sectional views of the SEM images recorded beyond the breakdown potential (Eb) revealed the occurrence of intense pitting attack with the formation of large hemispherical pits. The effect of adding some environmentally acceptable inorganic inhibitors (tungstates, molybdates or silicates) on the pitting corrosion behaviour of Al in HG solutions was also studied. Measurements were carried out under the influence of various experimental variables based on polarization and chronoamperometric techniques. These measurements were complemented by ex situ scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) examinations of the electrode surface. The presence of these compounds in HG solutions decreased the passive current density (jpass) and increased Eb. In HG solutions, chronoamperometric measurements showed that the anodic current density first decreased, due to growth of a passive oxide film, then increased with time after a pit incubation time, ti and finally attained a steady-state value. Value of ti was shortened and simultaneously the steady-state current was elevated, corresponding to an increase in the rate of pit initiation and growth, with increasing applied anodic potential and HG concentration. The rate of pit nucleation () was found to decrease to an extent depending on the type and concentration of the introduced inhibitor. The inhibitory effect of these compounds decreased in the order:  >  > .  相似文献   

18.
The 3D growth behaviour of pits initiated at MnS inclusions for A537 steel under cyclic load condition has been investigated by confocal scanning laser microscope and finite element analysis. The results indicated the growth of pit for cyclic-stressed samples showed anisotropic behaviour. Significant higher growth rate was found in the direction perpendicular to load axis. Finite element analysis indicated that localized plastic strain played an important role on pit growth. The growth kinetics of pit in width direction is dominated by plastic deformation. Coalescences of pits further increase the growth rate of pit as predicted by finite element analysis.  相似文献   

19.
In this paper the potential of the galvanostatic polarization technique as accelerated method for determining the characteristic pit potentials on stainless steels in crevice-free conditions is examined. Measurement of the potential change as a function of time shows a maximum that agrees with the nucleation pit potential. Thereafter, a stationary potential is reached corresponding to the protection potential against pit. Possible limitations of this kind of measurements have been remedied by refinements in the test procedure and conditions. The state of the surface oxide film and the applied anodic current are two basic parameters that must be well defined because they govern the pitting susceptibility. It has been found that with applied anodic currents in the range 40–200 μA/cm2 and with prior electrode exposures to solution between 30 and 60 min it is possible to obtain results in excellent agreement with the conventional potentiodynamic tests with the advantage of smaller data scattering and absence of crevice at electrode/holder interfaces. These effects are the result of the rapid pitting stimulated in the galvanostatic method. This implies a short duration of the experiment thus also favouring the elimination of the time-dependent crevice, which notoriously contributes to the poor reproducibility of pit potentiodynamic potentials. A detailed series of experiments have been conducted on several stainless steels and in different test conditions to validate the accuracy of the galvanostatic polarization method.  相似文献   

20.
The influence of Cu and Sn on the pitting corrosion resistance of AISI 304 and 316 stainless steels in chloride-containing media has been investigated. The corrosion behaviour was evaluated by cyclic polarization, potentiostatic CPT measurements and electrochemical impedance spectroscopy in 3.5 wt% NaCl. The corrosion resistance was also studied in FeCl3 under Standard ASTM G-48. According to the results, Cu addition favours pit nucleation but inhibits its growth, whereas Sn exerts the opposite effect, favouring pit growth and inhibiting its nucleation. Studies by SEM, X-ray mapping and EDS analysis showed Cu-, Cl- and O-rich corrosion products that reduce the extent of corrosion damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号