首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
缸内直接喷射式汽油机的一个显著特点是依靠火花塞点燃喷入缸内的汽油油束。由于缸内混合气浓度极不均匀,所以其点火及火焰传播过程与普通均质燃烧式发动机有很大的不同。火焰核心的稳定形成及初始火焰发展对缸内的整个燃烧过程有极其重要的影响。本文利用二维两相混合模型模拟喷雾过程,利用一个详细的准维模型模拟火花塞的点火过程,并采用特殊处理方法使两个子模型相匹配,计算了缸内直接喷射式汽油机从喷雾到形成稳定火核的全过程,分析了多种因素对点火稳定性的影响,尤其是对涡流比、点火时刻和喷油定时之间的适当配合进行了模拟分析。计算结果对优化实验有明显的指导作用。  相似文献   

2.
Recent high-speed imaging of ignition processes in spray-guided gasoline engines has motivated the development of the physically-based spark channel ignition monitoring model SparkCIMM, which bridges the gap between a detailed spray/vaporization model and a model for fully developed turbulent flame front propagation. Previously, both SparkCIMM and high-speed optical imaging data have shown that, in spray-guided engines, the spark plasma channel is stretched and wrinkled by the local turbulence, excessive stretching results in spark re-strikes, large variations occur in turbulence intensity and local equivalence ratio along the spark channel, and ignition occurs in localized regions along the spark channel (based upon a Karlovitz-number criteria).In this paper, SparkCIMM is enhanced by: (1) an extended flamelet model to predict localized ignition spots along the spark plasma channel, (2) a detailed chemical mechanism for gasoline surrogate oxidation, and (3) a formulation of early flame kernel propagation based on the G-equation theory that includes detailed chemistry and a local enthalpy flamelet model to consider turbulent enthalpy fluctuations. In agreement with new experimental data from broadband spark and hot soot luminosity imaging, the model establishes that ignition prefers to occur in fuel-rich regions along the spark channel. In this highly-turbulent highly-stratified environment, these ignition spots burn as quasi-laminar flame kernels. In this paper, the laminar burning velocities and flame thicknesses of these kernels are calculated along the mean turbulent flame front, using tabulated detailed chemistry flamelets over a wide range of stoichiometry and exhaust gas dilution. The criteria for flame propagation include chemical (cross-over temperature based) and turbulence (Karlovitz-number based) effects. Numerical simulations using ignition models of different physical complexity demonstrate the significance of turbulent mixture fraction and enthalpy fluctuations in the prediction of early flame front propagation. A third paper on SparkCIMM (companion paper to this one) focuses on the importance of molecular fuel properties and flame curvature on early flame propagation and compares computed flame propagation with high speed combustion imaging and computed heat release rates with cylinder pressure analysis.The goals of SparkCIMM development are to (a) enhance our fundamental understanding of ignition and combustion processes in highly-turbulent highly-stratified engine conditions, (b) incorporate that understanding into a physically-based submodel for RANS engine calculations that can be reliably used without modification for a wide range of conditions (i.e., homogeneous or stratified, low or high turbulence, low or high dilution), and (c) provide a submodel that can be incorporated into a future LES model for physically-based modeling of cycle-to-cycle variability in engines.  相似文献   

3.
Large Eddy Simulations (LES) of forced ignition of a bluff-body stabilised non-premixed methane flame using the Conditional Moment Closure (CMC) turbulent combustion model have been performed. The aim is to investigate the feasibility of the use of CMC/LES for ignition problems and to examine which, if any, of the characteristics already observed in related experiments could be predicted. A three-dimensional formulation of the CMC equation was used with simple and detailed chemical mechanisms and sparks with different parameters (location, size) were used. It was found that the correct pattern of flame expansion and overall flame appearance were predicted with reasonable accuracy with both mechanisms, but the detailed mechanism resulted in expansion rates closer to the experiment. Moreover, the distribution of OH was predicted qualitatively accurately, with patches of high and low concentration in the recirculation zone during the ignition transient, consistent with experimental data. The location of the spark relative to the recirculation zone was found to determine the pattern of the flame propagation and the total time for the flame stabilisation. The size was also an important parameter, since it was found that the flame extinguishes when the spark is very small, in agreement with expectations from experiment. The stabilisation mechanism of the flame was dominated by the convection and sub-grid scale diffusion of hot combustion products from the recirculation zone to the cold gases that enter the burner, as revealed by analysis of the CMC equation.  相似文献   

4.
The control of ignition in a rocket engine is a critical problem for combustion chamber design. Delayed ignition may lead to high-amplitude pressure fluctuations that can damage the burner (strong ignition), whereas early ignition may fail. This paper describes a numerical study of a strong ignition sequence observed in a laboratory-scale single-injector rocket chamber ignited by a laser and fueled with gaseous oxygen and hydrogen. OH-emission images, Schlieren pictures, and pressure measurements make it possible to follow the flame propagation experimentally. The present large eddy simulation (LES) approach includes shock treatment, a six species-seven reaction chemical scheme for H2-O2, and a model for the energy deposition by a laser. Flame/turbulence interaction is modeled with the thickened flame concept. LES is used to compute both the filling phase (during which the gaseous hydrogen and oxygen mix) and the ignition phase. The flame location and structure, as well as the temporal evolution of the chamber pressure obtained numerically, are in good agreement with the experiment. The use of complex chemistry in the computation also allows the comparison of LES data with experimental OH-images and shows that the sensitivity of the CCD camera used to record the spontaneous emission of the OH radical is not high enough to properly locate the flame front in rich regions. The combined experimental and numerical results lead to a more detailed analysis of the ignition processes and its coupling with flow rate oscillations in the H2 and O2 feeding lines.  相似文献   

5.
In this paper, large eddy simulation (LES) is performed to investigate the propagation characteristics of premixed hydrogen/methane/air flames in a closed duct. In LES, three stoichiometric hydrogen/methane/air mixtures with hydrogen fractions (volume fractions) of 0, 50% and 100% are used. The numerical results have been verified by comparison with experimental data. All stages of flame propagation that occurred in the experiment are reproduced qualitatively in LES. For fuel/air mixtures with hydrogen fractions of 0 and 50%, only four stages of “tulip” flame formation are observed, but when the hydrogen fraction is 100%, the distorted “tulip” flame appears after flame front inversion. In the acceleration stage, the LES and experimental flame speed and pressure dynamic coincide with each other, except for a hydrogen fraction of 0. After “tulip” flame formation, all LES and experimental flame propagation speeds and pressure dynamics exhibit the same trends for hydrogen fractions of 0 and 100%. However, when the hydrogen fraction is 50%, a slight periodic oscillation appears only in the experiment. In general, the different structures displayed in the flame front during flame propagation can be attributed to the interaction between the flame front, the vortex and the reverse flow formed in the unburned and burned zones.  相似文献   

6.
The largest known experiment on hydrogen-air deflagration in the open atmosphere has been analysed by means of the large eddy simulation (LES). The combustion model is based on the progress variable equation to simulate a premixed flame front propagation and the gradient method to decouple the physical combustion rate from numerical peculiarities. The hydrodynamic instability has been partially resolved by LES and unresolved effects have been modelled by Yakhot's turbulent premixed combustion model. The main contributor to high flame propagation velocity is the additional turbulence generated by the flame front itself. It has been modelled based on the maximum flame wrinkling factor predicted by Karlovitz et al. theory and the transitional distance reported by Gostintsev with colleagues. Simulations are in a good agreement with experimental data on flame propagation dynamics, flame shape, and outgoing pressure wave peaks and structure. The model is built from the first principles and no adjustable parameters were applied to get agreement with the experiment.  相似文献   

7.
Large eddy simulation of spark ignition in a turbulent methane jet   总被引:3,自引:0,他引:3  
Large eddy simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel formation, the progress and topology of the flame propagating upstream, and stabilization as a tubular edge flame are analyzed in detail and compared to experimental data for a range of ignition parameters. In addition to ignition simulations, statistical analysis of nonreacting LES solutions is carried out to discuss the ignition probability map established experimentally.  相似文献   

8.
The paper aims at revealing the interaction of various numbers of premixed methane/air jet flames in a closed duct. In the experiment, a high-speed video camera and pressure transducers are used to study the flame structure and pressure dynamics. In the numerical simulations, large eddy simulation (LES) with Power-Law combustion model is employed to investigate the interaction between the moving flame and vortices induced by the thin plate. The results demonstrate that the flame propagation for all plate configurations can be divided into four typical stages, i.e. hemispherical flame, finger-shaped flame, jet flame and bidirectional propagation flame. For three plate configurations, the jet flames merge together under the effect of the vortices, and the more slits with the same blockage ratio (BR) do not mean the stronger deflagration. It is observed that the peaks of flame tip speed and pressure growth rate decrease with the increase of the number of slits. The sub-grid scale combustion model, Power-Law model, coupled with sub-grid scale viscosity model, dynamic Smagorinsky-Lilly eddy viscosity model can well reproduce the flame propagation. By analyzing the numeric flow structure, the flame propagation mechanism of premixed methane/air flame propagation in a tube with various slits can be explained in the view of pure hydrodynamics.  相似文献   

9.
A filtered tabulated chemistry model for LES of premixed combustion   总被引:1,自引:0,他引:1  
A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed.  相似文献   

10.
双燃料发动机的燃烧模型   总被引:3,自引:0,他引:3  
针对双燃料发动机燃烧特性,建立了柴油喷雾扩散燃烧子模型和气体燃烧均质混合气火焰传播燃烧子模型,应用该模型研究了双燃料发动机燃烧机理,计算结果和实验结果相当吻合。计算表明:当引燃柴油比例较大时,双燃料发动机燃烧过程以喷雾混合控制燃烧为主,柴油喷雾扩散燃烧模型与实测较吻合;当柴油比例较小时,该过程以均质混合气火焰传播燃烧为主,均质混合气火焰传播燃烧模型与实测软吻合。计算结果表明,引燃柴油量对双燃料发动机性能影响较大,引燃柴油减少,着火滞燃期延长,缸内最大爆发压力升高。  相似文献   

11.
本文提出了一种利用化学反应动力学模型与燃烧模型及紊流火焰传播模型建立的点火式天然气发动机双区燃烧模型 ,用该模型能较好地模拟点火式天然气发动机燃烧过程 ,并能实现爆燃预测及研究其发生的诸多因素。采用此模型对CA6 10 2汽油机改装为点火式天然气发动机 (以下简称为“CNG发动机”)进行模拟计算的结果与试验结果能较好地吻合 ,证明了该模型的可行性。  相似文献   

12.
The increasing use of hydrogen as a renewable source of energy underlines the need to be able to assess the safety risks involved in the event of an accidental explosion. This paper presents numerical studies for hydrogen/air propagating flames at an equivalence ratio of 0.7 in a laboratory-scale combustion chamber equipped with turbulence generating baffles and a solid square cross section obstruction. The large eddy simulation (LES) modelling technique is used with an in-house computational fluid dynamics (CFD) model for compressible flows to study the flow turbulence and the flame propagation characteristics. The study is carried out using four different baffle arrangements and two different solid obstructions with area blockage ratios of 0.24 and 0.5. Results for the generated peak overpressure and the timing at which it occurs following ignition are considered as the primary safety factors. The time histories of the flame speed and position relative to the ignition source are validated against published experimental data. Good agreement is obtained between numerical results and experimental data which enables further predictions where measurements are limited in the study of vented hydrogen explosions. It was concluded that adding successive baffles and increasing the area blockage ratio escalates the maximum rate at which pressure rises and raises the generated peak explosion overpressure.  相似文献   

13.
汽油机燃烧过程模拟计算及爆震预测   总被引:3,自引:0,他引:3  
将计算焰前反应的化学反应动力学模型与燃烧模型及湍流火焰传播模型相结合,建立了含有碳氢燃料焰前反应的简易化学动力学模型的汽油机双区燃烧模型。用该模型能较好地模拟汽油机燃烧过程,并能实现爆震预测,研究影响爆震发生的诸多因素。采用此模型对492 Q A 汽油机进行模拟计算的结果与试验结果能较好地吻合,证明了该模型的可行性。  相似文献   

14.
In this paper, a consistent and rigorous formulation is developed for the coupling of the G-equation model to an LES flow solver that describes the interactions of the scales of the flame, the turbulence, and the filtering procedure from the resolved turbulence regime to the broadened preheat regions regime. A progress variable equation is introduced to describe the filtered flame structure. The models provided for the sub-filter diffusivity and the filtered reaction term appearing in this equation are consistent with the solution of the G-equation model. The solution of the progress variable equation ensures that the resolved part of the turbulent mixing in the preheat region can be described. However, the C-field is underresolved if the sub-filter Damköhler number is not much smaller than unity, and hence the solution of the C-equation cannot be expected to produce the correct flame propagation speed. The coupling with the G-equation ensures that the flame front described by the filtered reaction progress variable moves with the correct propagation velocity, independent of numerical diffusion caused by an underresolution of the flame. Formulations both for low-Mach number flow solvers and for fully compressible solvers are presented. To validate the formulation, the model is applied in compressible LES of two turbulent flames anchored by a triangular flame-holder. For the statistically stationary case, the mean and RMS progress variable are in very good agreement with experimental data, demonstrating that the model correctly reproduces the flame anchoring and the flame-turbulence interactions in the recirculation zone. For the acoustically pulsed case, the LES fields show the same large scale fluctuations that are present in the experimental data.  相似文献   

15.
High-speed schlieren photography, pressure records and large eddy simulation (LES) model are used to study the shape changes, dynamics of premixed flame propagation and pressure build up in a closed duct. The study provides further understanding of the interaction between flame front, pressure wave and combustion-generated flow, especially when the flame acquires a “distorted tulip” shape. The Ulster multi-phenomena LES premixed combustion model is applied to gain an insight into the phenomenon of “distorted tulip” flame and explain the experimental observations. The model accounts for the effects of flow turbulence, turbulence generated by flame front itself, selective diffusion, and transient pressure and temperature on the turbulent burning velocity. The schlieren images show that the flame exhibits a salient “distorted tulip” shape with two secondary cusps superimposed onto the two original tulip lips. This curious flame shape appears after a well-pronounced classical tulip flame is formed. The dynamics of “distorted tulip” flame observed in the experiment is well reproduced by LES. The numerical simulations show that large-scale vortices are generated in the burnt gas after the formation of a classical tulip flame. The vortices remain in the proximity of the flame front and modify the flow field around the flame front. As a result, the flame front in the original cusp and near the sidewalls propagates faster than that close to the centre of the original tulip lips. The discrepancy in the flame propagation rate finally leads to the formation of the “distorted tulip” flame. The LES model validated previously against large-scale hydrogen/air deflagrations is successfully applied in this study to reproduce the dynamics of flame propagation and pressure build up in the small-scale duct. It is confirmed that grid resolution has an influence to a certain extent on the simulated combustion dynamics after the flame inversion.  相似文献   

16.
17.
建立了球坐标系下传热、传质、化学反应全耦合的煤粉燃烧数值模拟程序.通过煤粉与事先脱除挥发分的焦炭的对比实验及数值模拟,研究了挥发分火焰对碳粒表面一次产物CO火焰的点燃及碳粒燃烧的影响.傅里叶变换红外光谱仪(FTIR)测温实验及煤粉燃烧动态过程的数值模拟结果不仅进一步验证了碳粒着火初期CO火焰所引起的颗粒高温现象,而且给出了挥发分引燃表面反应一次产物CO的直接证据.由于挥发分火焰的引燃作用,碳粒可以在较其非均相着火温度为低的温度下被点燃,阐明了Juntgen提出的联合着火方式的物理本质.  相似文献   

18.
Hydrogen is recognized as a most dangerous gas due to high ignition rate and flame speed. In this work, numerical simulations have been performed to simulate the flow pattern and flame deflagration of hydrogen gas inside a confined chamber with different obstacles. This study tries to disclose the transient progress of flame to define the key actual factors affecting flow feature and flame propagation. In order to simulate hydrogen flame deflagration the limited obstacle channel, a three-dimensional model is established and large eddy simulation (LES) method is applied for the simulation of the model. The impacts of obstacle geometry on the pressure distribution are carefully examined. Obtained results show that overpressure inside the confined channel significantly increase within 0.3–0.6 ms. In this work, comprehensive reliable correlation for prediction of the pressure inside the confined channel is present. Our findings clearly demonstrates that velocity-density coefficient plays significant role the pressure distribution inside the model.  相似文献   

19.
20.
Flamelet Generated Manifolds (FGM) tabulated chemistry is used in combination with a thickened flame approach to perform Large Eddy Simulation (LES) of premixed combustion. Two-dimensional manifolds are used to describe the chemistry by the mixture fraction and progress variable. Simulations of one-dimensional flames have been used to verify the coupling of the tabulated chemistry and the LES solver where important features like the grid dependence of flame propagation are carefully addressed. Finally, the method is applied to the turbulent flame of a premixed swirl burner including the complex geometry of the swirl nozzle. Results of the velocity, species and temperature are compared with experimental data. Thereby different efficiency functions are used to show the sensitivity related to this model parameter. Some aspects regarding dynamic thickening, numerical accuracy and computational efficiency are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号