首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
锂离子电池高镍Li Ni_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM,x≥0.6)正极材料因具有较高的能量密度和低成本等优势在电池领域备受关注,然而随着镍含量的升高,材料锂镍混排严重且热稳定性下降,导致高镍三元材料的循环稳定性和安全性恶化。本研究针对高镍三元材料阳离子无序排列严重和循环稳定性差的问题,通过共沉淀法在前驱体合成过程中将Mg掺杂进入晶体,得到Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)(Mg1.0)活性材料,进一步利用液相法在材料表面包覆Al_(2)O_(3),成功制备Al_(2)O_(3)涂覆的Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)复合材料(Mg1.0@Al)。X射线衍射(XRD)结果表明,Mg掺杂能够有效扩大材料层间距,抑制阳离子混排;扫描电子显微镜(SEM)结合透射电子显微镜(TEM)结果表明,改性未对NCM811材料整体形貌造成影响,同时能够明显地观察到通过液相法在材料表面包覆的Al_(2)O_(3)涂层。电化学测试结果表明,镁铝协同改性可以稳定NCM811材料结构,减少阴极的界面极化,遏制材料与电解液发生副反应,使得材料表现出优越的电化学性能。Mg1.0@Al在1 C循环100次后表现出稳定的放电电压(ΔV=5.2 m V)、较低的电荷转移阻抗(R_(ct)=51.66Ω)和卓越的锂离子扩散系数(D_(Li)=4.05×10^(-14)cm^(2)/s)。同时,Mg1.0@Al材料在2.8~4.3V电压范围下,展现出卓越的循环性能和倍率性能:1 C下循环100次和400次后仍有188.58 m Ah/g和147.47 m Ah/g的放电比容量,容量保持率分别为95.18%和74.54%;5 C大倍率电流下,放电比容量高达146.3 m Ah/g。  相似文献   

2.
随着电动汽车电源及储能技术的快速发展,高镍三元层状氧化物因其高容量和低成本等优势,成为动力电池首选正极材料之一,但是高镍三元材料面临循环性能和倍率性能差等问题,严重限制了其规模化应用。高镍单晶可以有效减缓颗粒裂纹的产生,从而提高高镍正极材料的循环稳定性,但是高镍单晶严苛的制备条件限制了其开发与应用。本工作通过共沉淀-高温固相法和熔盐法分别制备出多晶高镍材料LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM-PC)和单晶LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)材料(NCM-SC),并通过电子显微技术(SEM)、X射线粉末衍射仪(XRD)、恒电流间歇滴定技术(GITT)和电化学测试对两者的晶体结构、微观形貌、电化学性能及Li+传输动力学进行了系统研究。研究表明,NCM-PC具有较高的锂离子扩散系数,导致其优异的倍率性能,在10 C充放电倍率下,其放电比容量高达164 mAh/g。尽管NCM-SC的高倍率性能欠佳,但其循环性能优异,在3 C倍率下,经100次循环后其容量保持率高达89%。本研究为进一步探索单晶/多晶超高镍(Ni≥90%)正极材料尺寸调控及性能优化提供了参考。  相似文献   

3.
通过固态电解质构建的全固态锂离子电池具有极高的安全性及可靠性,是目前锂离子电池领域的研究热点。其中复合固态电解质既改善了聚合物电解质力学性能差、离子电导率低等缺点又解决了无机固态电解质的界面接触等问题。本文通过溶胶-凝胶法制备了掺杂了Al、Mo的Li_(7)La_(3)Zr_(2)O_(12)粉体,并将其与PEO(聚环氧乙烷)复合,利用溶液浇筑法制备了不同比例的复合固态电解质,考察其在全固态电池中的性能。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等测试手段对Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)粉体以及复合固态电解质进行了材料表征。同时利用电化学工作站、电池充放电测试系统测试了复合固态电解质在全固态电池中的应用性能。与纯PEO电解质相比,复合15%Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)的电解质电化学窗口为4.79V,可以在0.2mA/cm^(2)下稳定循环500h,在0.1C倍率下,循环100圈容量保持率为89.9%。  相似文献   

4.
钠离子电池因其成本低廉、环境友好且与锂离子电池工作原理相似,在大规模储能领域极具应用潜力。作为决定电池能量密度的关键组成部分,O3型钠基层状过渡金属氧化物因高容量、合成简单等优势在众多正极材料中脱颖而出。然而,Na^(+)在O3结构中八面体位点间的迁移需克服较大的能垒,最终导致复杂反应相变的发生和容量快速衰减。因此,探究O3型正极材料电化学反应过程中Na^(+)脱嵌行为与结构演变的构效关系对开发高性能正极材料至关重要。本工作以O_(3)-NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)(O3-NFM)正极为研究对象,对其电化学性能、Na^(+)传输动力学性质及相变机制展开了系统研究。电化学测试结果表明,O3-NFM在充电至高压(4.3 V)时可脱出0.84 mol Na^(+),发挥约201.9 mAh/g的比容量,但可逆性欠佳。当截止电压为4.0 V时,该正极材料循环性能优异,原位XRD结果进一步证明了电化学反应过程中O3-P3/O3-P3-P3/O3-O3的可逆结构转变。循环伏安(CV)曲线和恒电流间歇滴定技术(GITT)结果表明其具有快速的钠离子扩散速率,从而表现出较好的倍率性能。本研究为探索以O3-NFM为基础的正极材料结构设计及性能调控提供了理论基础。  相似文献   

5.
研究硅基负极在充放电及循环过程中的膨胀对开发下一代高比能锂离子动力电池具有重要意义。本工作采用商业化的SiO_(x)/Graphite为负极匹配高比能镍钴锰酸锂[Li(Ni_(0.8)Mn_(0.1)Co_(0.1))O_(2),NCM811]正极,组装了60 Ah大软包电池,并对其进行循环膨胀应力、应力增长机理与膨胀应力的改善等方面的研究。结果表明SiO_(x)材料的构成为3~5 nm Si颗粒分散在无定形的SiO_(2)内部,首次充放电比容量为1840.9/1380 mAh/g,库仑效率为75%。大软包电池单次充放电膨胀应力的变化为7320 N,约为石墨负极的4倍。工作温度越高容量衰减越快,衰减到70%SOH时,25、45和60℃对应的循环次数分别为980、850和500次,对应的最大膨胀应力分别为25107、25490、23667 N。此外,机理分析发现电池循环膨胀应力的增长和容量衰减之间为线性相关,CP(cross section polisher)-SEM分析发现膨胀应力的增加主要来自于SiO_(x)颗粒表面的破裂及副反应导致的SEI(solid electrolyte interphase)增厚。通过测定缓冲垫压缩曲线的方法筛选了合适的聚氨酯类缓冲垫,验证对循环无影响,但可以显著改善膨胀应力的增加,膨胀应力降低50%,这些结果将为更好地应用高比容量的硅基负极材料奠定基础。  相似文献   

6.
O3型层状氧化物正极材料NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)具有高比容量、低成本和环境友好性等优点,被认为是最有前途的钠离子电池正极材料之一,但在充放电过程中会发生一系列复杂的相变,导致电化学性能较差。本研究报道了一种协同改性方法,以同时提高NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的循环稳定性和倍率性能。通过将硼酸粉末和正极材料固相球磨混匀后低温煅烧,在NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料表面包覆纳米非金属氧化物B_(2)O_(3)。借助X射线衍射仪(XRD)、扫描电子显微技术(SEM)、透射电子显微镜(TEM)和电化学技术等测试手段,对比分析不同包覆量和原材料的形貌和电化学性能,筛选得到最优包覆量为2%(质量分数,余同)。该方法实现了B_(2)O_(3)的均匀包覆,并且没有改变NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的晶体结构。通过电化学性能测试表明2%B_(2)O_(3)包覆材料在1 C倍率下循环200圈容量保持率从78%提升至87%。同时,2%B_(2)O_(3)包覆材料的高倍率性能也得到了改善,10 C高倍率下放电比容量从75 mAh/g提升至99 mAh/g。结果表明,这是一种有效且可靠的表面改性策略,可以增强钠离子电池层状氧化物正极材料的电化学性能。  相似文献   

7.
采用原位聚合法制备了凝胶型软包锂离子电池,该电池包括钴酸锂正极、石墨负极、镀陶瓷聚乙烯隔膜,以及弥散于正负极和隔膜之间的凝胶电解质.电化学测试表明,凝胶型电池具有和液态电池可比的容量和循环稳定性.差示扫描量热(DSC)测试表明,相对于液态电解质,凝胶电解质与钴酸锂正极和石墨负极之间的热稳定性更好.热板和加速量热(ARC)试验表明,凝胶电池具有更好的安全性能.采用原位聚合法制作了超薄软包电池,该电池显示出较好的柔性,经折叠和剪切试验后该电池仍可正常工作.  相似文献   

8.
采用三电极电池实时监测不同倍率充放电过程中全电池、正极对锂、负极对锂以及浓差电池电压变化,得到不同倍率下充放电过程中正负极之间液相锂离子浓度变化规律,与此同时还研究了不同层数隔膜三电极电池正负极之间液相锂离子浓度的变化趋势.本工作通过恒电流间歇滴定法(GITT)测试了三电极电池中正极Li(Ni0.65Co0.2Mn0.15)O2(NCM65)电极表观化学扩散系数和负极石墨电极表观化学扩散系数.结果表明,充放电过程中正负极之间液相锂离子浓度变化与负极对锂电位有关,且充电过程正负极之间液相锂离子浓度大于放电过程正负极之间液相锂离子浓度.充电过程中,倍率越大,正负极之间液相锂离子浓度越大,放电过程则相反.通过增加正负极之间隔膜层数以此增加扩散路径,隔膜层数增加正负极之间液相锂离子浓度有所降低,总体锂离子浓度变化趋势保持不变,但靠近正负极侧液相锂离子浓度有一定差异.GITT测试正极NCM65电极表观化学扩散系数(3.57×10-9~5.63×10-8cm2/s)大于负极石墨电极表观化学扩散系数(1.16×10-10~8.21×10-8cm2/s),且负极石墨表观化学扩散系数的变化趋势也与负极对锂电位有关,因此得出正极脱嵌锂速度大于负极,液相锂离子浓度变化受负极扩散的影响.  相似文献   

9.
水系锌离子电池的能量密度高、稳定性好、安全系数高。NiCo_(2)O_(4)材料作为双过渡金属氧化物,其导电性能和电化学活性都很出色,本工作首次采用NiCo_(2)O_(4)材料作为水系锌离子电池的正极。采取了溶胶-凝胶法加煅烧热方法制备出立体尖晶石状的NiCo_(2)O_(4)材料,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析技术(EDS)和电化学技术等表征测试手段,分析这种新型水系锌离子电池正极材料的形貌和电化学性能。结果表明,立体尖晶石状的NiCo_(2)O_(4)材料有着优良的纯度和结晶性,颗粒分散均匀,没有团聚,无杂质且具有良好稳定的充放电性能。电极在100 mA/g电流密度下,首次放电比容量为92 mA·h/g,100圈充放电测试后放电比容量为60 mA·h/g,200圈后,放电比容量保持在44 mA·h/g。但在循环倍率测试中发现,当电流密度较大时,NiCo_(2)O_(4)电极产生了27 mA·h/g的衰减,在一定程度上有着不可逆的冲击破坏。本研究有助于推动水性锌离子电池电极的应用,为高性能水性锌离子电池电极材料的研发提供实验依据。  相似文献   

10.
在锂离子电池制造过程中,电芯注入电解液时,隔膜局部区域出现褶皱并在隔膜和极片间残留有气泡是一个常见的现象.隔膜上的褶皱和隔膜/极片间界面的缺陷会造成电池内阻分布不均匀,内阻低的地方电池循环过程中可能会局部过充或过放,进而影响电池的一致性及循环性能.针对这一现象,对不同种类的隔膜进行了研究,发现溶剂碳酸二甲酯(DMC)在流动浸润隔膜过程中,各种隔膜均会产生褶皱,且褶皱间距随隔膜厚度的增加略有增大.通过对DMC流动浸润隔膜的前端进行分析,发现隔膜产生褶皱主要有两个原因:DMC局部浸润隔膜过程中,毛细作用导致隔膜在液体流动前端出现隆起,在隔膜和极片间出现间隙.同时,DMC扩散到隔膜和极片的内部孔隙所排出的气体在极片/隔膜界面处积累形成气泡,导致隔膜出现局部的变形和皱褶.为解决上述问题,本文提出在电池加工过程中把涂布有聚偏氟乙烯(PVDF)的复合隔膜与正负极片热压黏合,粘合力抵消DMC浸润隔膜时所产生的毛细作用,能够减少或完全消除隔膜的褶皱.实验表明,当隔膜和正极极片热压后的剥离强度小于10 mN/cm时,黏结力尚不足以完全平衡毛细作用,隔膜仍会出现局部的皱缩,但褶皱数量明显减少.当剥离强度大于15 mN/cm时,隔膜的褶皱现象才被完全消除,说明提高隔膜与极片间的黏结强度,是一个解决隔膜/极片界面处缺陷的有效方法,隔膜褶皱等宏观缺陷的消除也有利于提高锂离子电池的一致性及循环稳定性,具有明确的实际应用价值.  相似文献   

11.
本研究以三元NCM811为正极材料、人造石墨为负极材料制作了软包锂离子电池,并通过固定正极容量、变化负极容量的方式设计了三种不同N/P比,并对其初始容量、首效、初始内阻、倍率放电、高低温放电、高温存储、循环寿命等进行了研究。结果表明N/P比设计对电芯容量发挥、首效、初始内阻、高低温放电、高温存储、循环寿命均具有一定影响,对倍率放电无明显影响。提高N/P比将有利于正极材料的容量发挥,提高电芯的初始容量;但过高的N/P比会使正极电极电位偏高,电解液易在正极侧发生副反应,而低的N/P比可以使正极具有较低的电极电位,降低电池在高温存储、循环过程中过渡金属溶出和副反应发生,提高电芯的高温存储和循环性能。但N/P比过低时,Li+易在负极表面还原,造成活性锂损失,影响电芯循环性能。综合考察各项电性能,本研究最优N/P比设计为1.10。  相似文献   

12.
以铵根离子为载流子的可充电水系铵离子电池具有诸多本征优势,然而对于其全电池的研究与探索仍然处于起步阶段。本文首次报道了PTCDI//δ-MnO_(2)铵离子电池体系。该电池采用0.5 mol/L NH_(4)Ac作为电解液,以层状δ-MnO_(2)作为正极材料,3,4,9,10-四甲酰二亚胺(PTCDI)作为有机负极,可以在0~1.5 V电压窗口内稳定工作。本文中的层状δ-MnO_(2)正极材料采用简单的KMnO_(4)热分解法制备,并通过XRD、SEM、TEM、XPS、FTIR、拉曼光谱等手段对δ-MnO_(2)纳米片正极进行了表征。实验研究结果表明,通过合理搭配PTCDI纳米粒子负极,该全电池在0.5 A/g的电流密度下循环500圈后,容量保持率仍为初始容量的92%,库仑效率接近100%,具有优异的循环稳定性。同时系统地研究了δ-MnO_(2)纳米片正极的储能机理以及PTCDI有机负极的储铵动力学特性。非原位XPS光谱结果表明NH^(4+)可以在正极材料中实现可逆地脱嵌。该全电池具有较高的电压窗口,可以较为轻松地向风扇及LED灯等常见小型电器供电,具有良好的发展前景。综上所述,新材料的开发对构建新一代安全环保的水系铵离子电池具有重要意义。  相似文献   

13.
Na_(3)V_(2)O_(2)(PO_(4))_(2)F(NVOPF)具有较稳定的聚阴离子结构、较高的工作电压和理论比能量,是一种具有良好应用前景的钠离子电池正极材料。但该材料在合成过程中易发生不规则团聚,且本征电导率低,导致材料的实际比容量较小,倍率性能和循环性能有待提高。通过离子掺杂以及合成具有微纳结构的材料可以有效提高这类材料的结构稳定性和电导率。本工作首次报道了多元醇辅助水热法合成具有空心微球结构的Nb5+掺杂NVOPF[NVNOPF,Na_(3)V_(2-x)NbxO_(2)(PO_(4))2F(0≤x≤0.15)]材料。所制备的NVOPF和NVNOPF是尺寸为0.7~1.0μm的具有中空结构的微球。可以发现微球由尺寸小于100 nm的纳米颗粒组成。纳米颗粒缩短钠离子的扩散距离,并且缓冲了由于钠离子的嵌入/脱出所导致的体积变化,提高了材料的循环稳定性。同时,掺杂Nb5+增大了NVOPF的晶格参数,增大了Na+扩散通道,将Na+在NVOPF中的固相扩散系数由Na_(3)V_(2)O_(2)(PO_(4))_(2)F的6.46×10^(-16)cm^(2)/s提高至Na3V1.90Nb0.10O2(PO_(4))_(2)F的3.52×10^(-15)cm^(2)/s。Na_(3)V_(1.90)Nb_(0.10)O_(2)(PO_(4))_(2)F材料以0.1 C倍率放电,首次放电比容量达126.4 mAh/g;以10 C倍率放电,初始比容量为98.1 mAh/g,500周循环后的容量保持率为95.2%,明显优于未掺杂材料的66.8%。研究结果显示掺杂Nb5+的空心球形微纳结构有效提高了NVOPF材料的电化学性能和循环稳定性。  相似文献   

14.
Fe_(3)O_(4)作为锂离子电池负极材料,在充放电时体积变化较大,导致其容量衰减严重。目前,碳包覆是解决这个问题的主要方式之一。本工作以氧化石墨烯(GO)和Fe^(2+)为原料,用一步水热法合成了三维石墨烯片包覆Fe_(3)O_(4)纳米颗粒3DG@Fe_(3)O_(4)复合材料。使用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪、X射线衍射(XRD)仪、拉曼光谱(Raman)仪、扫描电子显微镜(SEM)对复合物进行表征,研究结果表明,复合材料呈现石墨烯(G)片包覆Fe_(3)O_(4)纳米颗粒的三明治结构。同时采用了恒流充放电(GCPL)、循环伏安(CV)以及交流阻抗(EIS)等电化学测试方法,着重研究了Fe_(3)O_(4)含量对其电化学性能的影响,Fe_(3)O_(4)质量分数为83.2%的3DG@Fe_(3)O_(4)-2电极具有最高的比容量和循环性能,在0.1 A/g的电流密度下的首次放电比容量为1412.33 mAh/g,循环100次后的放电比容量为577 mAh/g,是纯Fe_(3)O_(4)电极材料经历100次循环后的6.5倍。一步水热合成方法具有操作简单、合成条件温和及无需额外添加还原剂等优点;制备的复合电极相比纯Fe_(3)O_(4)具有电极容量高、循环稳定性能好的优势,有助于推动Fe_(3)O_(4)基负极材料在电化学领域中的应用。  相似文献   

15.
全固态锂电池采用金属硫化物FeS2作为正极材料能实现较高的可逆比容量,但是循环过程中较大的应力/应变和不良的固固接触引起的界面失效,严重影响了其在全固态锂电池中的电化学性能.本工作采用溶剂热法制备了 Co掺杂FeS2的纳米颗粒,随后在Co0.1Fe0.9S2纳米颗粒表面原位沉积离子电导率较高的Li7P3S11固体电解质,获得Co0.1Fe0.9S2@Li7P3S11纳米复合材料,并将其应用于全固态锂电池中,过渡金属Co的掺杂能提高FeS2的电化学反应动力学性能,而Li7P3S11固体电解质原位包覆能进一步改善固固接触,提高界面锂离子传输特性,继而提高全固态锂电池电化学性能.进一步通过透射电子显微镜(TEM)表征,证实了 Li7P3S1固体电解质包覆在Co0.1Fe0.9S2纳米颗粒表面.电化学测试表明,Li7P3S11固体电解质颗粒的包覆能有效提高以FeS2为活性物质的全固态锂电池的充放电比容量和循环稳定性.Co0.1Fe0.9S2@Li7P3S11复合材料在200 mA/g的电流密度下,首次放电比容量达到882.1 mA-h/g,循环100圈后放电比容量仍保持在670.9 mA·h/g.本研究有助于推动金属硫化物正极材料在全固态锂电池中的应用,从而为实现更高能量密度的全固态锂电池提供实验依据.  相似文献   

16.
水系锂离子电池具有优良的安全性能和高离子导电性等优点,得到了广泛研究.LiMn2O4材料在水系锂离子电池中较差的循环稳定性使其应用受到限制.为了改善这一缺陷,以乙炔黑为模板,采用简单的高温固相法合成了Al掺杂的LiMn2O4材料(LiMn1.9Al0.1O4),并应用于水系锂离子全电池中.实验结果表明,在0.1 A/g的电流密度下,LiMn2O4材料放电比容量高达125.5 mA·h/g,略高于LiMn1.9Al0.1O4材料的比容量(121.6 mA·h/g).在0.1 A/g电流密度下,经200次循环LiMn1.9Al0.1O4材料的容量保持率(90%)高于LiMn2O4材料(78%).将电流密度提升到1 A/g经500次循环后LiMn1.9Al0.1O4和LiMn2O4材料的容量保持率分别为88%和57%.上述结果表明Al掺杂的锰酸锂材料在水系锂离子电池中的循环稳定性以及倍率性能均有明显提高,说明Al的掺杂能显著提升锰酸锂正极材料的结构稳定性,并且能够缓解Mn的溶解和抑制Jahn-Teller效应,改善循环性能.  相似文献   

17.
为了对比铝(Al)、锰(Mn)元素对高镍正极材料循环性能的影响,明确镍钴铝(NCA)、镍钴锰(NCM)及镍钴锰铝(NCMA)三类高镍正极材料循环稳定性的差别以及循环过程中失效机理的差异,本工作选用3种相同镍含量的NCA、NCM及NCMA高镍正极材料对其循环性能以及循环过程中三者结构变化异同点进行了研究。研究结果证实,常温下3款高镍正极材料的循环性能排序为NCA>NCMA>NCM。通过微分容量(d Q/d V)曲线、扫描电子显微镜(SEM)等分析发现,相同阶段3种材料结构破坏程度排序为NCM>NCMA>NCA,电池在循环过程中的容量衰减很大程度上源自正极材料的结构破坏;进一步对3款正极材料在不同循环阶段的电化学交流阻抗谱(EIS)进行分析,发现循环过程中正极阻抗持续增大,且阻抗的增大明显受到晶体及二次颗粒结构变化的影响,电池循环稳定性与正极材料本身结构稳定性密切相关,最终造成3款高镍正极材料循环性能的差异。通过对三者循环性能的系统性对比与分析,加深了对高镍正极材料成分-结构-性能关系的理解,对于提升高镍正极材料的稳定性研究具有重要指导作用。  相似文献   

18.
近年来,水系锂离子电池具有功率高、环境污染小等优点而受到广泛关注。文章采用在碱性体系中稳定性较好的Li Fe PO4作为正极材料,石墨板为负极,组装锌锂离子电池;通过SEM分析、XRD分析、循环伏安测试、线性扫描伏安测试等手段研究了锂的嵌入脱出以及锌的沉积溶解反应的反应活性及正极材料的稳定性。  相似文献   

19.
锂硫电池在下一代高能量密度可充电电池中极具吸引力,但多硫化物严重的穿梭效应阻碍了它的实际应用。本工作利用离子交换法成功地制备了一种锂掺杂分子筛(Li@CHA),并将其与氧化石墨烯(GO)结合用于修饰常规聚丙烯隔膜,以缓解锂硫电池的穿梭效应问题。借助扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、氮气吸-脱附法以及电化学测试,深入研究了Li@CHA的形貌、结构及用于锂硫电池的电化学性能。研究显示,Li@CHA可在隔膜表面充当“离子筛”,有效抑制多硫化物阴离子的自由穿梭,并提高锂离子的传输性能。此外,GO也可以通过化学吸附进一步抑制穿梭效应,并改善修饰层的导电性,降低电池阻抗。因此,采用这种改性隔膜的锂硫电池表现出增强的反应动力学、出色的倍率性能和稳定的循环性能,在3 C下获得了638 mAh/g的高倍率容量,在0.5 C下循环500圈后仍具有71.0%的高容量保持率。本工作为抑制多硫化物的穿梭效应提供了一条新的思路,有望进一步推动锂硫电池的实际应用。  相似文献   

20.
与目前采用有机电解液的商业化锂离子电池相比,引入固体电解质的固态锂电池在同时提升电池能量密度和安全性方面具有巨大潜力,成为开发下一代锂电池的重点。在众多固体电解质材料中,石榴石型的锂镧锆氧(Li_(7)La_(3)Zr_(2)O_(12),LLZO)凭借高锂离子电导率、优异的对锂稳定性和宽电化学窗口等优点受到广泛关注。然而,LLZO的引入带来诸多界面之间的突出问题,例如固固界面的物理接触、应力应变、电荷重新排布以及电化学稳定性等。这些问题不仅是影响电池性能的关键因素,而且带来了很多新的物理化学现象需要深入研究。因此,本文从LLZO基固体电解质与电极之间的外部界面和固体电解质及复合电极内部界面两个角度入手,依据本课题组多年的研究积累,结合领域内最新研究动态,详细讨论了:(1)LLZO基固体电解质粉体材料表面碳酸锂(Li_(2)CO_(3))的形成原因、对电化学性能的影响以及克服这一问题的手段;(2)LLZO基固体电解质层内部界面调控对锂离子电导率及电池电化学性能的影响;(3)LLZO/Li界面特性及Li在LLZO基陶瓷电解质中贯穿生长,深入探讨了诱导Li析出和生长的电场、电荷、应力应变等作用机制;(4)复合正极内部界面问题及其与电解质层外部接触界面的一体化构筑方法。希望通过本文对LLZO固态锂电池界面问题的关键科学和技术的分析总结,为构筑高导通高稳定界面,推动高性能固态锂电池发展提供思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号