首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
提出一种基于水面物理特征和GPU实时加速的水面效果三维模拟方法.根据水面运动的物理特征和水面纹理变化特征,采用4个周期函数叠加产生几何波和2个周期函数叠加产生纹理渡,使用凹凸纹理表现水面的细节.通过环境映射实时模拟出水面的反射等现象,通过GPU实时加速渲染,最终生成实时并且生动逼真的水面。  相似文献   

2.
提出基于GPU编程的真实感水面的优化实时渲染算法。介绍了各种水面渲染需要使用到的图形,数学处理技术。通过固定的顶点流实现了水波建模,凹凸映射贴图和纹理混合,水面的反射和折射等多种特效,并使用可编程流水线的补色渲染完成最后的水面绘制。实验证明该方法可以很好地模拟真实水面的渲染要求,可以满足3D游戏和动画中对水面渲染的需要。  相似文献   

3.
提出基于GPU编程的真实感水面的优化实时渲染算法。介绍了各种水面渲染需要使用到的图形,数学处理技术。通过固定的顶点流实现了水波建模,凹凸映射贴图和纹理混合,水面的反射和折射等多种特效,并使用可编程流水线的补色渲染完成最后的水面绘制。实验证明该方法可以很好地模拟真实水面的渲染要求,可以满足3D游戏和动画中对水面渲染的需要。  相似文献   

4.
一种基于GPU的大规模水面实时模拟方法   总被引:1,自引:0,他引:1  
大规模水面的实时模拟一直是虚拟现实技术中的一个研究热点。在各种虚拟场景中,绚丽逼真的实时的水面效果可以大大增强场景的真实感和沉浸感。采用高度图和增加随机扰动的方法实现动态水面的建模,为了增加水面效果的逼真度,结合使用了纹理映射、色彩融合以及动态纹理技术,实现了具有波纹、反射、折射和水面流动等水面效果。为了加快渲染速度,利用可编程图形硬件的强大计算能力,将顶点法向量计算,水面发射折射等需要大量计算的步骤,通过GPU编程的方式实现。较传统的基于CPU的水面模拟,本文试验结果不仅真实感比较强,渲染速度更是有了很大的提高,说明本文算法的可行性和在渲染速度上的优越性。  相似文献   

5.
基于多重网格法的实时流体模拟   总被引:3,自引:0,他引:3  
在GPU上实现了多重网格法,并用该方法改进了二维的实时流体模拟,更充分地利用GPU的并行计算能力.使用4层网格,依靠渲染到纹理的计算方式、帧缓存扩展的纹理管理方法,提高了图形硬件的利用率.实验对比表明,在同样的帧数下该方法能提高GPU实时流体模拟的精度.尤其在较大规模的问题上,与同等精度的基于一般迭代方法的GPU实时流体模拟相比,该方法在速度上可有成倍地提高.  相似文献   

6.
GPU在实时阴影绘制中的应用   总被引:1,自引:1,他引:0  
实时阴影在增强三维场景真实感方面起着非常重要的作用。阴影体算法是实时阴影绘制中效果非常理想的一种方法。但是随着场景复杂度的增加,该算法计算量比较大,将导致绘制效率的降低。另一方面,随着可编程GPU技术的发展,GPU的渲染速度远远大于CPU,为提高三维场景的渲染效率提供了更大的空间。在此基础上,介绍了一种在GPU上生成阴影体的方法,加速实时阴影绘制。利用图形硬件的图形处理单元(GPU)的运算能力和可编程性,将生成阴影体的大量计算从CPU转移到GPU,从而有效地提高实时阴影的绘制效率。  相似文献   

7.
空间插值是地理信息系统(GIS)空间分析中计算复杂且耗时的操作,因此无法满足实时性的要求。随着图形处理器(GPU)浮点计算能力的大幅提高,GPU通用计算已成为处理GIS领域内复杂计算的研究热点。为实时化一些传统低效的算法提供了良好的契机。利用GPU在并行计算上的优势,将反距离加权法插值算法映射到了统一计算设备架构(CUDA)并行编程架构。首先在GPU中建立二级索引使计算层次得到了合理的划分,然后利用多线程分块策略执行并行插值计算。最后通过实验表明,该方法的插值误差与CPU方法相比能控制在10-6数量级,并且在插值半径较大插值数据较多的情况下,该算法可达到40倍以上的加速比。充分证明了该方法的正确性及高效性。  相似文献   

8.
郭新钊  张军 《计算机仿真》2010,27(1):218-221
水面效果的仿真可大幅提高自然环境仿真的真实感,传统对于CPU的仿真存在占用CPU时间和系统资源的缺点,针对存在问题,建立了基于图形处理单元(GPU)的水面仿真方法,讨论水面特效在GPU上的实现、以及水面网格在GPU中的重构。因为运算以及水面网格重构都在GPU中完成,充分利用GPU强大的图形处理能力,因此不会造成额外的系统开支,并且增强了对水面细节的表现,使得水面的逼真度和实时性增强。  相似文献   

9.
使用GPU技术的数据流分位数并行计算方法   总被引:1,自引:0,他引:1  
周勇  王皓  程春田 《计算机应用》2010,30(2):543-546
数据流实时、连续、快速到达的特点决定了数据流的实时处理能力。在处理低维数据流时经常使用分位数信息来描述数据流的统计信息,利用图形处理器(GPU)的强大计算能力和高内存带宽的特性计算数据流分位数信息,提出了基于统一计算设备架构(CUDA)的数据流处理模型和基于该模型的数据流分位数并行计算方法。实验证明,该方法在提供不低于纯CPU分位数算法相同精度的条件下,使数据流分位数的实时计算带宽得到了显著的提高。  相似文献   

10.
群体仿真在虚拟现实、影视动画、计算机游戏等领域有着广泛的应用。大规模的群体仿真中每个个体都要同其感知范围内的其他个体相互作用,当实时更新所有个体的状态时,就会导致O( N2)计算量的问题。针对这一问题,实现了一种基于GPU(图形处理器)的BOIDS群体行为模拟算法,充分利用GPU并行计算的能力处理大规模群体运动的巨大计算量。该方法利用GPU的快速光栅化计算每个个体同其感知范围内的其他个体的相互作用力,通过像素颜色混合功能实现作用力的累加,利用GPU自动生成MipMap的能力计算所有个体的平均速度和平均位置。实验结果表明,该方法能够有效提高大规模群体运动的渲染速度。  相似文献   

11.
为了实时模拟真实性高的镜头水滴,提出一种在可编程图形硬件中实现的镜头水滴渲染新方法。首先三维场景被渲染到一张场景纹理,然后在GPU着色器中为镜头水滴产生不规则边缘接触曲线,使用该曲线快速构建水滴的曲面,最后采用曲面的表面信息并根据水滴的光学属性渲染出水滴的折射效果。采用该方法,可以实时地在屏幕上渲染出镜头水滴效果。使用GPU着色器进行渲染,可以在渲染出效果逼真的水滴的情况下,获得实时的帧率。采用光线折射物理方法渲染出的水滴的效果比直接使用纹理贴图方式获得的水滴的效果更逼真。  相似文献   

12.
为了逼真地模拟自然河道中的流动水体,提出了一种基于流场的流动水体仿真方法.应用流体力学原理,实时计算稳定水流的速度,构建河流的流场,然后运用流场驱动并约束满足泊松碟分布的块状纹理在河道内移动,通过对块状纹理进行混合与渲染,构成了一种自然水体的动态流动效果.水面渲染采用GLSL (opengl shading language)着色器进行渲染,实际运用GPU可编程渲染管线进行图形计算,减少了CPU的实时运算量,提高程序的整体效率,实践表明,应用以上方法可以有效地模拟流域内的动态流动水体.  相似文献   

13.
基于CUDA海量空间数据实时体绘制研究   总被引:1,自引:0,他引:1  
针对海量空间科学数据的精细及实时三维绘制需求,提出并实现了一种基于CUDA语言的并行化光线投射体绘制加速算法,利用传统体绘制算法中光线投射法的可并行特点和GPU中高速的纹理查询的优点,通过一个实际坐标到纹理坐标的转换函数实现了对不规则采样数据的准确采样,并完成了绘制算法的CUDA并行化改造,通过CUDA语言利用GPU强大的并行计算能力实现了对海量空间数据的实时三维光线投射绘制.  相似文献   

14.
View-dependent multiresolution rendering places a heavy load on CPU. This paper presents a new method on view-dependent refinement of multiresolution meshes by using the computation power of modern programmable graphics hardware (GPU). Two rendering passes using this method are included. During the first pass, the level of detail selection is performed in the fragment shaders. The resultant buffer from the first pass is taken as the input texture to the second rendering pass by vertex texturing, and then the node culling and triangulation can be performed in the vertex shaders. Our approach can generate adaptive meshes in real-time, and can be fully implemented on GPU. The method improves the efficiency of mesh simplification, and significantly alleviates the computing load on CPU.  相似文献   

15.
实时生成具有真实感效果的水面是计算机图形学中的研究热点和难点之一。文章介绍了一个利用可编程图形硬件来实现水面实时生成和绘制的系统,绘制过程主要分两个方面:水面的建模和水面光照效果的实现。通过基于空间域的快速傅立叶变换技术来实现水面的建模,通过凹凸纹理贴图和投影纹理技术来实现水面的反射、折射和菲涅耳等水面光照效果。绘制过程主要在图形处理器中实现,从而保证了算法的实时性。在现有的PC机和可编程图形硬件加速卡上能达到每秒30帧以上的绘制速度。  相似文献   

16.
冯玉康  周圣川  马纯永  韩勇  陈戈 《计算机工程》2012,38(19):218-221,225
分析地球大气层的实际参数及大气密度随海拔高度变化的关系,设计光线投射算法,在图形处理器中实现空气粒子的精确大气散射运算,通过建立3D查找表对计算过程进行加速,实现地球大气层的高效仿真和大气内部高密度三维体积云的实时渲染.实验结果表明,该方法真实感较强,渲染效率较高.  相似文献   

17.
为解决动态地形绘制过程中高逼真性与实时性这一矛盾,提出一种基于GPU 的动 态地形实时绘制方法。首先基于Geometry Clipmaps 算法构建地形层次结构,然后在更新过程 中引入真实物理模型与过程纹理映射相结合方法,以使最终绘制的地形达到更为逼真的效果。 为验证该方法的有效性,模拟了炮弹在草地上爆炸形成的弹坑效果,并与基于ROAM 算法绘制 的弹坑效果在绘制三角形数量、平均帧速率及CPU 占用率3 个方面做了对比。实验结果表明, 所提方法能够有效减少绘制的三角形数量,并能获得较高的帧速率及逼真度,满足动态地形绘 制对于高逼真性和实时性的要求。  相似文献   

18.
One of the main challenges in real-time rendering is to enable more and more effects that were previously available in offline rendering only. An important effect among these is physically correct reflections of arbitrary objects in curved reflectors like windshields. In this paper we propose fragment tracing on the GPU as a solution to interactively realizing this effect for large scenes as employed in industrial applications. For each rasterized fragment, a ray is traced through an octree representing the original geometry and surface material. By introducing a GPU implementation of an octree traversal, for the first time hierarchical data structures can efficiently be used on the GPU. As a result, the approach allows both handling of large geometries such as those employed in virtual prototyping and accurate rendering. Several examples show the generality and achievable rendering quality of our method.  相似文献   

19.
基于GPU编程的地形可视化   总被引:5,自引:1,他引:4       下载免费PDF全文
由于地形模型固有的复杂性,致使计算机硬件水平一直难以满足大规模地形模型的实时显示需求。为了在现有的硬件水平上实现地形模型的快速绘制,在对传统的ROAM算法进行改进的基础上,提出一种基于GPU编程的地形可视化算法,实现了视点依赖的大规模地形的快速可视化。该算法首先基于改进的ROAM(real-time optimallyadaptive meshes)算法生成视点依赖的优化连续LOD模型;然后用GPU编程计算顶点的变换、法向量、纹理坐标、纹理采样和面元光照;最后完成地形的着色。实验结果表明,利用GPU编程不仅能有效提高算法速度,而且能实现较大规模地形的实时漫游。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号