首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ release was examined in neurons isolated from the mollusc Helix pomatia using Ca2+ indicator fura-2 and fluorescent digital-imaging microscopy technique. Extracellular application of caffeine caused a fast and pronounced augmentation of [Ca2+]i whose amplitude and kinetics differ in the centre of the cell and near its membrane. Mean values of caffeine-induced increase of [Ca2+]i were 0.97 +/- 0.11 microM at the periphery and 0.53 +/- 0.13 microM in the centre. The rates of rise and relaxation of caffeine-evoked [Ca2+]i transients were faster near the membrane. Pressure injection of inositol, 1,4,5-trisphosphate into the same neurons produced an abrupt and significant increase of [Ca2+]i in the centre (mean value of inositol 1,4,5-trisphosphate-induced elevation = 0.55 +/- 0.11 microM) while the response was smaller or even absent near the cellular membrane. Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ transients did not affect each other. The data obtained indicate that in snail neurons these two calcium pools are not overlapping and at least some part of the caffeine-sensitive store is located close to the cellular membrane and that the inositol 1,4,5-trisphosphate-sensitive one is located in the centre of the cell.  相似文献   

2.
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release from the ER that was highly dependent on [Ca2+]ER and sensitized by low concentrations of caffeine. Caffeine-induced Ca2+ release was quantal in nature due to modulation by [Ca2+]ER. Whereas caffeine released essentially all the Ca2+ from the ER, inositol 1,4, 5-trisphosphate (InsP3)- producing agonists released only 60-80%. Both InsP3 and caffeine emptied completely the ER in digitonin-permeabilized cells whereas cyclic ADP-ribose had no effect. Ryanodine induced permanent emptying of the Ca2+ stores in a use-dependent manner after activation by caffeine. Fast confocal [Ca2+]c measurements showed that the wave of [Ca2+]c induced by 100-ms depolarizing pulses in voltage-clamped cells was delayed and reduced in intensity in ryanodine-treated cells. Our results indicate that the ER of chromaffin cells behaves mostly as a single homogeneous thapsigargin-sensitive Ca2+ pool that can release Ca2+ both via InsP3 receptors or CICR.  相似文献   

3.
The effects of adrenomedullin (AM), a hypotensive peptide, were investigated in cultured human oligodendroglial cell line KG-1C. Human AM increased the intracellular Ca2+ concentration ([Ca2+]i) at concentrations greater than 10(-7) M. Human calcitonin gene-related peptide (CGRP), a peptide structurally related to AM, also increased [Ca2+]i with a potency similar to that of AM. AM increased [Ca2+]i in the absence of extracellular Ca2+. Further, AM increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) level in a concentration-dependent manner similar to that of AM-induced [Ca2+]i, suggesting that AM-induced elevation of [Ca2+]i is due to Ca2+ release from Ins(1,4,5)P3-sensitive stores. AM (10(-9) to 10(-6) M) increased cAMP in a concentration-dependent manner. Forskolin also increased cAMP, but did not mimic the [Ca2+]i-raising effect of AM. These findings suggest that functional AM receptors are present in oligodendroglial KG-1C cells and that AM increases [Ca2+]i through a mechanism independent of cAMP.  相似文献   

4.
Rotavirus infection is the leading cause of severe diarrhea in infants and young children worldwide. The rotavirus nonstructural protein NSP4 acts as a viral enterotoxin to induce diarrhea and causes Ca2+-dependent transepithelial Cl- secretion in young mice. The cellular basis of this phenomenon was investigated in an in vitro cell line model for the human intestine. Intracellular calcium concentration ([Ca2+]i) was monitored in fura-2-loaded HT-29 cells using microscope-based fluorescence imaging. NSP4 (1 nM to 5 microM) induced both Ca2+ release from intracellular stores and plasmalemma Ca2+ influx. During NSP4-induced [Ca2+]i mobilization, [Na+]i homeostasis was not disrupted, demonstrating that NSP4 selectively regulated extracellular Ca2+ entry into these cells. The ED50 of the NSP4 effect on peak [Ca2+]i mobilization was 4.6 +/- 0.8 nM. Pretreatment of cells with either 2.3 x 10(-3) units/ml trypsin or 4.4 x 10(-2) units/ml chymotrypsin for 1-10 min abolished the NSP4-induced [Ca2+]i mobilization. Superfusing cells with U-73122, an inhibitor of phospholipase C, ablated the NSP4 response. NSP4 induced a rapid onset and transient stimulation of inositol 1,4,5-trisphosphate (IP3) production in an IP3-specific radioreceptor assay. Taken together, these results suggest that NSP4 mobilizes [Ca2+]i in human intestinal cells through receptor-mediated phospholipase C activation and IP3 production.  相似文献   

5.
Microinjection of inositol 1,4,5-trisphosphate (InsP3) into intact skeletal muscle fibers isolated from frogs (Rana temporaria) increased resting cytosolic Ca2+ concentration ([Ca2+]i) as measured by double-barreled Ca2+-selective microelectrodes. In contrast, microinjection of inositol 1-phosphate, inositol 1,4-biphosphate, and inositol 1,4,5,6-tetrakisphosphate did not induce changes in [Ca2+]i. Incubation in low-Ca2+ solution, or in the presence of L-type Ca2+ channel blockers did not affect InsP3-induced release of cytosolic Ca2+. Neither ruthenium red, a blocker of ryanodine receptor Ca2+-release channels, nor cytosolic Mg2+, a known inhibitor of the Ca2+-induced Ca2+-release process, modified the InsP3-induced release of cytosolic Ca2+. However, heparin, a blocker of InsP3 receptors, inhibited InsP3-induced release of cytosolic Ca2+. Also, pretreatment with dantrolene or azumulene, two inhibitors of cytosolic Ca2+ release, reduced [Ca2+]i, and prevented InsP3 from inducing release of cytosolic Ca2+. Incubation in caffeine or lengthening of the muscle increased [Ca2+]i and enhanced the ability of InsP3 to induce release of cytosolic Ca2+. These results indicate that InsP3, at physiological concentrations, induces Ca2+ release in intact muscle fibers, and suggest that the InsP3-induced Ca2+ release is regulated by [Ca2+]i. A Ca2+-dependent effect of InsP3 on cytosolic Ca2+ release could be of importance under physiological or pathophysiological conditions associated with alterations in cytosolic Ca2+ homeostasis.  相似文献   

6.
We previously reported that prostaglandin D2 (PGD2) specifically elevates intracellular cyclic AMP in nonchromaffin cells isolated from bovine adrenal medulla (Biochim. Biophys. Acta (1989) 1011, 75-80). Here we again found that PGD2 increased intracellular Ca2+ concentration ([Ca2+]i) in freshly isolated nonchromaffin cells and investigated the cellular mechanisms of PGD2-induced [Ca2+]i increase using the Ca2+ indicator fura-2 and a fluorescence microscopic imaging system. Treatment of the cells with PGD2 receptor agonists BW245C and ZK110841 resulted in both marked stimulation of cyclic AMP formation and an increase in [Ca2+]i. The [Ca2+]i response was also induced by bypassing of the receptor with forskolin, a direct activator of adenylate cyclase, but not by PGE2 or PGF2 alpha both of which are devoid of the ability to generate cyclic AMP in the cells. These cyclic AMP and [Ca2+]i responses induced by PGD2 were completely blocked by the PGD2 receptor antagonist BWA868C. The time-course of cyclic AMP production stimulated by PGD2 coincided with that of the [Ca2+]i increase. While the Ca(2+)-mobilizing hormone bradykinin stimulated a rapid inositol phosphate accumulation in nonchromaffin cells, PGD2 did not stimulate it significantly. Removal of extracellular Ca2+ markedly reduced the Ca2+ response to PGD2 in magnitude and duration, but did not alter the peak [Ca2+]i response to bradykinin. These results demonstrate that PGD2 receptor activation induces the increase in [Ca2+]i via cyclic AMP mainly by increasing the Ca2+ influx from the outside, unlike inositol trisphosphate which causes release of Ca2+ from internal stores.  相似文献   

7.
A permeable cell system in which Ca2+ release can be evoked by inositol 1,4,5-trisphosphate (IP3) or agonist stimulation was used to study the regulation of Ca2+ release by Ca2+ itself. At low concentrations, Ca2+ activated IP3-mediated Ca2+ release (IMCR) with half-maximal effect at about 15 nM. At high concentrations, Ca2+ inhibited IMCR giving rise to a biphasic [Ca2+] dependence of IMCR. The activation of IMCR by Ca2+ appears to be mediated by a kinase, probably the Ca(2+)-and calmodulin-dependent protein kinase (CaMKII). Thus, the activation required MgATP, completely blocked at 0 degrees C, required Ca2+, and was inhibited by the CaMKII inhibitors KT5926 and KN62. The inhibition of IMCR seems to be mediated by a protein phosphatase, probably the Ca(2+)-dependent protein phosphatase 2B. Hence, the inhibition required Ca2+, was prevented by the general protein phosphatase inhibitor pyrophosphate and by the immunosuppressants cyclosporin A and FK506, but not by okadaic acid or VO4(2-), and was modified by chelating agents such as EGTA. Stimulation with agonists modified the activities of the kinase and phosphatase to make the release independent of [Ca2+]. This appears to be due to an increase in the apparent affinity for Ca2+ in stimulating IMCR and inhibition of the phosphatase. We suggest that agonist-dependent modification of the kinase/phosphatase activity ratio can be the biochemical pathway responsible for regulation of Ca2+ release and in turn [Ca2+]i oscillations.  相似文献   

8.
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca(2+)-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of -60 mV, the muscarine-induced [Ca2+]i rise, especially its sustained phase, decreased in magnitude. Intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca(2+)-channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

9.
The mechanisms responsible for somatostatin (SRIF)-induced increases in intracellular Ca2+ concentration ([Ca2+]i) and subsequent desensitisation were studied in CHO-K1 cells expressing human sst5 receptors (CHOsst5 cells). To study the nature of the desensitisation, interactions with uridine triphosphate (UTP) were examined. SRIF (pEC50 7.10) and UTP (pEC50) 5.14) caused concentration-dependent increases in [Ca2+]i but the SRIF maximum was about 40% of that to UTP. SRIF-, but not UTP-, induced increases in [Ca2+]i were transient and abolished by pertussis toxin. SRIF and UTP caused sustained increases in Ins(1,4,5)P3 but the SRIF maximum was about 30% of that to UTP. Removal of [Ca2+]e attenuated the SRIF-induced peak rise in [Ca2+]i but had no effect on the peak increases in Ins(1,4,5)P3. UTP-induced increases in [Ca2+]i and Ins(1,4,5)P3 were attenuated in the absence of [Ca2+]e. Following pre-exposure to SRIF (1 microM) or UTP (100 microM) for 5 min, subsequent SRIF responses were desensitised. Similar results were obtained in the absence of [Ca2+]e. Pre-exposure to SRIF had no effect on subsequent responses to UTP but in the absence of [Ca2+]e, responses to UTP were attenuated. The results suggest that SRIF but not UTP-induced increases in [Ca2+]i in CHOsst5 cells are mediated by pertussis toxin sensitive G proteins and are caused by an entry of extracellular Ca2+ and release from an Ins(1,4,5)P3 sensitive Ca2+ store. Homologous or heterologous desensitisation of agonist-induced increases in [Ca2+]i could be demonstrated in the presence or absence of extracellular Ca2+ respectively, and the latter appeared to involve depletion of a common intracellular Ca2+ store.  相似文献   

10.
Contraction in smooth muscle is triggered by an increase in cytoplasmic free calcium ([Ca2+]i) which depends on both Ca2+ influx through L-type Ca2+ channels and Ca2+ release from the sarcoplasmic reticulum (SR). Two mechanisms have been shown to be involved in SR Ca2+ release, one is stimulated by Ca2+ and involved ryanodine-sensitive Ca2+-release channels; the other is stimulated by an increase in inositol 1,4,5-trisphosphate (InsP3) generation induced by various mediators and involved InsP3-sensitive Ca2+ release channels. Here, we examined the effects of angiotensin II on [Ca2+]i in single rat portal vein myocytes using both the whole cell patch-clamp method and a laser scanning confocal microscope. Elementary Ca2+ release events (Ca2+ sparks) were obtained spontaneously or in response to L-type Ca2+ channel current activation, and resulted from activation of ryanodine-sensitive Ca2+-release channels in the SR. We show that angiotensin AT1 receptors stimulate Ca2+ sparks through activation of L-type Ca2+ channels without involving InsP3-induced Ca2+ release. This novel transduction pathway may be a common mechanism for vasoconstrictors which do not stimulate generation of chemical second messengers.  相似文献   

11.
Recent studies have demonstrated that opioid agonists affect the cytosolic Ca2+ concentration ([Ca2+]i) either by regulating plasma membrane Ca(2+)-channel activity or by mobilizing intracellular Ca2+ stores. The present report documents the [Ca2+]i increase induced by opioid agonists in a human neuroblastoma cell line, SK-N-BE, expressing delta-opioid receptors. In the presence, as well as in the absence, of extracellular Ca2+, opioid agonists enhanced significantly [Ca2+]i, whereas carbachol, known to mobilize specifically inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores, acted only in the presence of extracellular Ca2+. The opioid-induced increase in [Ca2+]i was not affected by treatments modifying the trimeric Gl, Go, and Gs protein transduction mechanisms or the activity of adenylyl cyclase. The Ca(2+)-ATPase pump-inhibiting sesquiterpene lactone, thapsigargin, did not modify the opioid-induced [Ca2+]i response, whereas it abolished the effects of carbachol. The Ryana speciosa alkaloid, ryanodine, at concentrations known to block endoplasmic reticulum ryanodine receptors, decreased significantly the response to opioids without affecting the effects of carbachol. Thus, our results suggest that, in SK-N-BE cells, delta-opioid receptors mobilize Ca2+ from intracellular ryanodine-sensitive stores and the mechanism involved is independent of Gl/Go Gs proteins and protein kinase A activation.  相似文献   

12.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

13.
It has been previously reported that parathyroid cells express endothelin (ET) receptors and secrete ET-1 in an extracellular Ca2+ concentration ([Ca2+]e)-dependent manner. Here, we examined the effects of ET-1 on intracellular signaling and parathyroid hormone (PTH) secretion in dispersed bovine parathyroid (bPT) cells, which comprise several cell types including epithelial and endothelial cells, in two cell lines, the rat parathyroid epithelial (PT-r) and the bovine parathyroid endothelial (BPE-1) cells. An RNA-polymerase chain reaction analysis revealed that both ETA and ETB receptors are expressed in bovine parathyroid tissue and BPE-1 cells, and only the ETA receptor is expressed in PT-r cells. PT-r cells also expressed an inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) receptor, and ionomycin induced an increase in the intracellular Ca2+ concentrations ([Ca2+]i) in a Ca(2+)-deficient medium, indicating the presence of an operative intracellular Ca2+ pool in these cells. In cells bathed in 1 mM [Ca2+]e, ET-1 induced a rapid and transient increase in the Ins(1,4,5)P3 production, which was associated with a similar profile of increase in [Ca2+]i and with a peak response of about 800 nM. No changes in the profile of [Ca2+]i responses were observed in ET-1-stimulated cells in the presence of Ca2+ channel blockers, or in Ca(2+)-deficient medium, indicating that Ca2+ mobilization was not associated with Ca2+ entry. Furthermore, a sustained stimulation with ET-1 induced a decrease in [Ca2+]i below the prestimulatory level in a large population of cells, and the percentage of the cell population that shows the sustained decrease of [Ca2+]i increased in higher ET-1 concentrations. [Ca2+]i in PT-r cells was also controlled by a [Ca2+]e-dependent mechanism that changed [Ca2+]i from 28 to 506 nM in a 0.1-3 mM concentration range with an EC50 of 1.2 mM, which is comparable to that reported for bPT cells. In the same range of [Ca2+]e, PTH secretion from bPT cells was inhibited with an IC50 of 1 mM, and ET-1 increased PTH release in a dose-dependent manner but without affecting the IC50 for the [Ca2+]e-dependent inhibition. Thus, the parathyroid epithelial cells appear to respond to ET-1 in a unique way, and the ET autocrine system can be regarded as a possible mechanism to modulate the sensitivity of [Ca2+]e-dependent PTH release.  相似文献   

14.
The repetitive spiking of free cytosolic [Ca2+] ([Ca2+]i) during hormonal activation of hepatocytes depends on the activation and subsequent inactivation of InsP3-evoked Ca2+ release. The kinetics of both processes were studied with flash photolytic release of InsP3 and time resolved measurements of [Ca2+]i in single cells. InsP3 evoked Ca2+ flux into the cytosol was measured as d[Ca2+]i/dt, and the kinetics of Ca2+ release compared between hepatocytes and cerebellar Purkinje neurons. In hepatocytes release occurs at InsP3 concentrations greater than 0.1-0.2 microM. A comparison with photolytic release of metabolically stable 5-thio-InsP3 suggests that metabolism of InsP3 is important in determining the minimal concentration needed to produce Ca2+ release. A distinct latency or delay of several hundred milliseconds after release of low InsP3 concentrations decreased to a minimum of 20-30 ms at high concentrations and is reduced to zero by prior increase of [Ca2+]i, suggesting a cooperative action of Ca2+ in InsP3 receptor activation. InsP3-evoked flux and peak [Ca2+]i increased with InsP3 concentration up to 5-10 microM, with large variation from cell to cell at each InsP3 concentration. The duration of InsP3-evoked flux, measured as 10-90% risetime, showed a good reciprocal correlation with d[Ca2+]i/dt and much less cell to cell variation than the dependence of flux on InsP3 concentration, suggesting that the rate of termination of the Ca2+ flux depends on the free Ca2+ flux itself. Comparing this data between hepatocytes and Purkinje neurons shows a similar reciprocal correlation for both, in hepatocytes in the range of low Ca2+ flux, up to 50 microM. s-1 and in Purkinje neurons at high flux up to 1,400 microM. s-1. Experiments in which [Ca2+]i was controlled at resting or elevated levels support a mechanism in which InsP3-evoked Ca2+ flux is inhibited by Ca2+ inactivation of closed receptor/channels due to Ca2+ accumulation local to the release sites. Hepatocytes have a much smaller, more prolonged InsP3-evoked Ca2+ flux than Purkinje neurons. Evidence suggests that these differences in kinetics can be explained by the much lower InsP3 receptor density in hepatocytes than Purkinje neurons, rather than differences in receptor isoform, and, more generally, that high InsP3 receptor density promotes fast rising, rapidly inactivating InsP3-evoked [Ca2+]i transients.  相似文献   

15.
We review and present current evidence supporting independent regulation of nuclear Ca2+ ([Ca2+]n). The nucleus and nuclear envelope contain proteins to both regulate and respond to changes in [Ca2+]n. However, this does not prove that [Ca2+]n is independently regulated from cytosolic Ca2+ ([Ca2+]c). Studies using fluorescent dyes suggested that changes in [Ca2+]n differed in magnitude from changes in [Ca2+]c. These studies have been criticised as the nuclear environment alters the fluorescent characteristics of these dyes. We have evaluated this question with aequorin targeted to the nucleus and cytoplasm and shown that the characteristics of the indicators are not altered in their respective environments. We have demonstrated that different stimuli induce changes in [Ca2+]n and [Ca2+]c that vary both temporally and in magnitude. The nucleus appeared to be shielded from increases in [Ca2+]c, either through a mechanism involving the nuclear envelope or by cytosolic buffering of localised increases in Ca2+. In addition, agonist stimulation resulted in an increase in [Ca2+]n, consistent with release from the perinuclear Ca2+ store. There was a stimulus dependence of the relation between [Ca2+]n and [Ca2+]c suggesting differential regulation of [Ca2+]n. These results have important implications for the role of Ca2+ as a specific regulator of nuclear events through Ca2+ binding proteins. In addition, they highlight the advantages of using targeted aequorin in intact cells to monitor changes in organelle [Ca2+].  相似文献   

16.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

17.
Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

18.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

19.
Cyclic ADP-ribose (cADPR), a novel putative messenger of the ryanodine receptor, was examined regarding its ability to mobilize Ca2+ from intracellular Ca2+ stores in isolated cells of parotid and submandibular glands of the dog. cADPR induced a rapid and transient Ca2+ release in the digitonin-permeabilized cells of salivary glands. cADPR-induced Ca2+ release was inhibited by ryanodine receptor antagonists ruthenium red, ryanodine, benzocaine, and imperatoxin inhibitor but not by the inositol 1,4,5-trisphosphate (IP3)-receptor antagonist heparin. Thapsigargin, at a concentration of 3 to 30 microM, inhibited IP3-induced Ca2+ release, while higher concentrations were required to inhibit cADPR-induced Ca2+ release. Cross-potentiation was observed between cADPR and ryanodine or SrCl2, suggesting that cADPR sensitizes the Ca2+-induced Ca2+ release mechanism. Cyclic AMP plays a stimulatory role on cADPR- and IP3-induced Ca2+ release in digitonin-permeabilized cells. Calmodulin also potentiated cADPR-induced Ca2+ release, but inhibited IP3-induced Ca2+ release. Acetylcholine and ryanodine caused the rise in intracellular free Ca2+ concentration ([Ca2+]i) in intact submandibular and parotid cells. Caffeine did not produce any increase in Ca2+ release or [Ca2+]i rise in any preparation. ADP-ribosyl cyclase activity was found in the centrifuged particulate fractions of the salivary glands. These results suggest that cADPR serves as an endogenous modulator of Ca2+ release from Ca2+ pools through a caffeine-insensitive ryanodine receptor channel, which are different from IP3-sensitive pools in canine salivary gland cells. This system is positively regulated by cyclic AMP and calmodulin.  相似文献   

20.
Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1-1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 microM thapsigargin (Tg), 10 microM 2,5-di-tert-butylhydroquinone, 1 microM ionomycin, or 100 microM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 microM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 microM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 microM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号