首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
俞剑蔚  李聪  蔡凝昊  刘梅  赵启航 《气象》2019,45(9):1288-1298
利用国家级格点实况分析资料与地面气象站实况数据,采用误差分析、技巧评分等方法评估了2017年7月至2018年6月逐时的格点实况产品在江苏地区的地面2 m气温、2 m相对湿度、10 m风和降水要素的一致性和准确性,同时采用MODE检验方法对格点降水产品空间分布偏差进行了分析。结果表明:2 m气温格点实况与自动站观测基本一致,平均绝对误差在0.5~0.8℃,均方根误差在0.8℃左右,其中日最高气温误差较小。格点实况和自动站2 m相对湿度之间的平均绝对误差在5%左右,均方根误差在6%~7%,表现出较高的准确性和稳定性。格点实况10 m风向准确率达到70%左右,而风速准确率仅为56%,与气象站点观测相比有明显差异。格点降水产品的全年有无降水准确率为90%~98%,对于晴雨检验存在带来较大影响的可能。格点实况产品对小雨级别降水的准确率最高,随着降水量级增大,格点实况降水场相比站点观测存在较多的降水漏报,因此,对于降水分量级检验还不适合用格点实况场来替代气象站点观测。设计了一种基于空间形态的降水准确率评分方法对降水空间落区进行检验,格点实况降水场的空间形态准确率评分在0.9左右,较准确地反映了实际降水空间分布。因而,格点实况数据在江苏平原地区都有较高的精度,误差在可接受的范围内,基本可以代替自动站观测作为预报和模式检验的真实实况场,但也存在以下几个方面的问题:(1)格点2 m气温、2 m相对湿度产品在江苏的丘陵地带误差较大,降水产品在海岛气象站准确性较低;(2)格点降水产品一定程度地弱化了大雨以上量级降水强度;(3)格点实况风速产品误差较大,与业务服务需求有一定差距。  相似文献   

2.
本文利用四川省156个国家地面气象观测自动站2018年逐小时降水资料,从降水产品与观测值的对比、降水产品误差空间特征、降水产品误差月变化、不同降水量级的误差特征等方面,对国家气象信息中心研制的中国区域1h、0.05° × 0.05°分辨率的地面-卫星-雷达三源融合实时降水产品和地面-卫星二源融合快速降水产品在四川区域的适用性进行对比评估。研究结果表明,两套融合降水产品能较好的反映四川区域年内小时降水的时空变化特征,与站点观测降水相比,两套融合降水产品均存在一定程度的低估,且随着降水量级的增大,均方根误差值也相应增大。两套融合降水产品相比,融合了雷达资料的三源融合降水产品各项指标均优于二源融合降水产品,数据质量更高。   相似文献   

3.
基于雷达资料快速更新四维变分同化(RR4DVar)技术和三维数值云模式发展的快速更新雷达四维变分分析系统(VDRAS),通过在系统中加入地面自动气象站观测资料的同化方法,对发生在北京地区的10个强对流过程开展了地面资料同化的高分辨率模拟分析和检验评估,并与已经业务使用的地面资料融合方法进行对比。研究结果发现,地面观测资料同化使边界层1 km高度以下的分析场改善最为明显,风速和风向的均方根误差分别平均降低0.1 m/s和7.2°,温度的均方根误差降低0.2℃。模式最低层100 m高度的风速均方根误差降低0.5 m/s,风速的误差随高度上升逐渐增大。模式最低层风向的均方根误差降低15.5°,温度的均方根误差降低0.4℃,且1.5 km高度以下的温度偏差都减小。区域内地面10 m高风速的均方根误差平均降低0.2 m/s,风向的均方根误差降低10.8°,地面2 m气温的偏差也降低。随着预报时效的延长,地面温度和风场的误差不断增大,但地面资料同化方法在一定程度上可以提高1 h内地面气象要素的预报效果。对2019年5月17日北京地区局地强对流新生和增强过程的详细分析表明,地面自动气象站观测资料的同化方法相对于融合,可以通过更细致准确地分析低层大气的热动力特征,改善低层气象要素的预报效果。在此基础上,通过探究对流单体的局地触发机理发现,海风锋辐合线与城市的相互作用一定程度上影响了对流的局地新生和发展,该同化方法可以进一步提高北京地区局地突发强对流的临近数值预报能力。   相似文献   

4.
基于是否耦合有城市冠层模式的3个对比试验(无城市冠层模式:W-NUR;单层冠层模式:W-UCM;多层冠层模式:W-BEP),应用WRF模式模拟了珠江三角洲(简称珠三角)地区发生于2011年6月21日午后的一次强降水过程,发现W-UCM、W-BEP试验模拟结果均优于W-NUR试验,但降水落区与实际观测相比仍有差异。为此应用前期10天(2011年6月11—20日)的模拟结果,通过对珠三角城市群6个站点基本气象要素模拟效果的评估,重点考察了W-NUR及W-UCM试验结果的差异,并对模拟降水存在差异形成的原因进行分析。评估结果表明:无论是W-NUR还是W-UCM,模拟的10 m高度风速普遍偏强,其中W-NUR模拟的平均风速与观测对比偏强1.61 m/s,W-UCM偏强1.58 m/s;W-NUR模拟的2 m高度温度及温度露点差均较观测偏低,温度平均偏差为-1.28 ℃,温度露点差平均偏差达-1.39 ℃,而W-UCM模拟的温度及温度露点差较观测偏高,温度平均偏差略高0.14 ℃,温度露点差平均偏差1.12 ℃。平均偏差及均方根误差分析反映出,温度模拟的误差最小,其次为温度露点差,风速误差最大,而且模拟温度和温度露点差与观测相关性更好,相关系数分别达到了0.60和0.50以上,通过0.001显著性水平检验,而风速的相关性则相对较弱。总体来看,尽管耦合冠层模式后WRF对地面气象要素的预报有所改善,但模拟的10 m高度风速仍然偏强。就21日强降水过程的模拟来说,由于偏北风偏强造成了切变线南压,可能是模拟降水落区偏南的一个原因。   相似文献   

5.
基于陕西省391个自动站逐小时降水量观测数据对国家级格点实况三源融合降水产品的适用性进行检验评估,结果表明:融合降水产品与站点观测之间的误差小、相关性高,但融合降水产品的标准差和极大值明显小于站点观测;相关系数较低的站点以区域站为主,国家气象观测站的效果明显优于区域站;误差时空分布和降水特征关系密切,在降水频次增多和强度增大时,融合降水产品相比站点观测的误差增大。将融合降水产品视为一种“预报”,站点观测资料作为“真值”进行分级检验,结果显示:融合降水产品可以较好反映有无降水,随降水量级增大空报率变化平稳,漏报率增长明显,导致TS评分逐渐下降。对典型个例的误差成因分析显示:融合降水产品可以较好地体现降水起止时间及性质、强弱演变趋势,但对雨强较大的区域性降水、分散性局地强降水表现欠佳。多种指标综合显示:融合降水产品小量级降水准确率高,对大雨以上量级降水强度有一定程度削弱;陕南秦巴山地的融合降水产品与站点观测偏差较大,应用中需特别关注。  相似文献   

6.
京津冀地区经济和文化的快速发展对冬季地面瞬时强风预报要求越来越高。正确估计和预测冬季地面瞬时强风,尤其是复杂地形条件下的阵风高分辨率格点精准预报,对于提升重大活动服务保障、首都及周边地区城市安全运行及防灾减灾能力等方面都具有重要意义。本研究基于京津冀长时间序列的实况观测资料,建立了阵风系数与稳定风速、风向、地形高度各要素之间的关系模型,并结合客观统计分析方法、阵风观测数据融合技术、格点偏差订正技术,发展了一种既保留模式物理参数特征和阵风局地气候特征,又发挥格点偏差订正技术的阵风客观预报方法。冬季奥林匹克赛事期间批量检验和个例分析结果表明,基于阵风系数格点模型和模式后处理订正技术得到的百米级分辨率、分钟级更新的阵风客观预报产品,24 h预报时效内张家口赛区和延庆赛区考核站平均绝对误差分别在2.3 m/s和3.0 m/s以下,延庆赛区8级以上大风,阵风风速预报评分超过0.5,解决了复杂山区数值模式阵风预报误差大、几乎无法业务应用的瓶颈问题,满足冬季奥林匹克运动会现场服务要求。  相似文献   

7.
以业务应用为目标,开展高时、空分辨率三维风场在强对流天气临近预报中的融合应用研究。运用北京快速更新多尺度分析和预报系统集成子系统(RMAPS-IN,Rapid-refresh Multi-scale Analysis and Prediction System-Integration),对雷达四维变分分析系统(VDRAS)30 min临近预报的高时、空分辨率三维风场作为数据源与自动气象站风场观测进行快速融合处理。结果表明,以VDRAS临近预报风场取代数值模式预报场作为融合初猜场后形成的分析结果对于风场有明显的改善:(1)长时间序列客观检验结果表明,地面10 m高风场U/V分量绝对误差分别为0.05和0.06 m/s。实时融合对未来预报的影响随着预报时效的延长,U/V分量的绝对误差不断增大。(2)对于11个强对流个例,地面10 m高风场风速均方根误差降低0.3 m/s,风向均方根误差降低13°;边界层三维风场,风速均方根误差降低0.8 m/s,风向均方根误差降低10°。平原站点融合以后风速、风向预报效果有较大改善,山区站点融合以后改善相对较小。(3)通过对2017年7月20日暴雨和7月7日雷暴大风个例的详细分析,发现融合基于雷达资料四维变分同化获得的高分辨率临近预报风场对各对流系统中的中尺度结构特征给出了更加细致准确的描述。   相似文献   

8.
利用2008—2010年春季(3—5月)黄渤海沿海地区34个站点的地面观测风场资料,对CFSR(Climate Forecast System Reanalysis)10m风场再分析数据进行对比分析和检验评估。结果表明:CFSR对逐时风速的平均误差以及平均绝对误差大都在1~2m/s之间,对6级以上大风的平均误差大都在-1~-3m/s,而A平台、成山头、西连岛站为-3~-4m/s。CFSR对逐日风速的平均误差基本在-2~2m/s之间,成山头站最大为-3m/s,对6级以上大风的平均误差基本在-4m/s以内,但西连岛站为-4.7m/s。CFSR对更接近海上的站点以及6级以上大风的评估更加偏小,此外逐日误差比逐时偏大1m/s左右。由北方气旋造成的7级以上大风站点最多,平均误差大都为-4~-5m/s。成山头站在南方气旋和低槽冷锋天气类型下的平均误差都在-5m/s以上。CFSR对各种天气系统产生的西北以及偏北大风的次数及其风向的评估均较好,对北方气旋和东高西低产生的偏南大风评估也比较准确,但对南方气旋产生的东北以及偏东大风评估略差。  相似文献   

9.
潘旸  沈艳  宇婧婧  赵平 《气象学报》2012,70(6):1381-1389
为了发展一套适用于中国区域的高分辨率(0.1°×0.1°)逐时降水产品,以CMORPH卫星反演降水为背景场,以基于3万个自动气象站观测的逐时降水量分析的中国降水格点分析产品(Chinese Precipitation Analyses,CPA)作为地面观测场,采用最优插值方法对二者进行了融合试验.用2009年6-8月的样本统计分析了卫星反演与地面观测降水的误差及其协相关形式,按照误差结构来分配权重.融合试验的个例检验表明,该方案在有站点的地区能较好地引入地面观测信息,在没有站点观测的地区则保留CMORPH的原始信息,最终形成一套覆盖中国区域的高时空分辨率的降水场.2009年6-8月独立样本检验的统计结果也表明,该融合产品的平均偏差、均方根误差、相对误差分别为-0.004 mm/h、1.271 mm/h和15.964%,平均空间相关系数达到0.778,与融合前CMORPH的各统计值相比,改进幅度基本都超过了50%,且与风云系列卫星的同类型产品相比精度也有一定程度的提高.  相似文献   

10.
BJ-RUC系统模式地面气象要素预报效果评估   总被引:3,自引:1,他引:2       下载免费PDF全文
利用自动气象站逐小时地面观测资料,采用客观检验方法对北京市气象局快速更新循环预报 (BJ-RUC) 系统在2008—2010年5—9月的预报结果进行检验,初步评估了BJ-RUC系统对地面气象要素的业务预报性能。结果表明:BJ-RUC系统对地面气象要素预报与实况的变化趋势有很好的一致性。其中,2 m温度预报整体偏高,误差范围为-1.5~1.5℃,早上和傍晚偏大,正午偏小;2 m相对湿度的预报整体偏低,误差为-25%~0,白天偏大,夜间偏小;10 m风速预报明显偏大,午后尤为显著,误差为0.6~1.2 m·s-1;6 h累积降水的晴雨预报效果较好,TS评分可达到0.4。系统在初始起报时次的稳定性较差,从第3个起报时次开始逐渐稳定,但预报误差随着预报时效的增长逐渐增大,12 h内的预报误差较小,预报结果较可靠,在短时临近预报中具有参考价值。  相似文献   

11.
This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates(SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps.First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions(MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation(OI)–based merging scheme(referred as the HL-OI scheme)is used to combine unbiased gauge observations, SEs, and MPs to reduce random error from each source and to produce a gauge—satellite–model merged daily precipitation analysis, called BMEP-d(Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period(2011–14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality.Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD(GPCP one-degree daily) show that the consistencies between BMEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.  相似文献   

12.
This is the first attempt to merge highly accurate precipitation estimates from Global Precipitation Measurement (GPM) with gap free satellite observations from Meteosat to develop a regional rainfall monitoring algorithm to estimate heavy rainfall over India and nearby oceanic regions. Rainfall signature is derived from Meteosat observations and is co-located against rainfall from GPM to establish a relationship between rainfall and signature for various rainy seasons. This relationship can be used to monitor rainfall over India and nearby oceanic regions. Performance of this technique was tested by applying it to monitor heavy precipitation over India. It is reported that our algorithm is able to detect heavy rainfall. It is also reported that present algorithm overestimates rainfall areal spread as compared to rain gauge based rainfall product. This deficiency may arise from various factors including uncertainty caused by use of different sensors from different platforms (difference in viewing geometry from MFG and GPM), poor relationship between warm rain (light rain) and IR brightness temperature, and weak characterization of orographic rain from IR signature. We validated hourly rainfall estimated from the present approach with independent observations from GPM. We also validated daily rainfall from this approach with rain gauge based product from India Meteorological Department (IMD). Present technique shows a Correlation Coefficient (CC) of 0.76, a bias of −2.72 mm, a Root Mean Square Error (RMSE) of 10.82 mm, Probability of Detection (POD) of 0.74, False Alarm Ratio (FAR) of 0.34 and a Skill score of 0.36 with daily rainfall from rain gauge based product of IMD at 0.25° resolution. However, FAR reduces to 0.24 for heavy rainfall events. Validation results with rain gauge observations reveal that present technique outperforms available satellite based rainfall estimates for monitoring heavy rainfall over Indian region.  相似文献   

13.
利用2019年1月1日00时~12月31日23时(世界时)四川156个国家站和1768个区域站的观测数据,评估全国智能网格实况分析产品(CLDAS)和ECMWF再分析数据(ERA5-Land)的10m风产品。采用双线性插值方法,将两种分析产品插值到气象站点,与观测值对比,通过平均误差,平均绝对误差,均方根误差和相关系数等指标对以上两种产品进行评估比较。结果表明:两种分析产品对于四川省国家站和高原地区区域站风速都以低估为主,但盆地区域站高估。风速在高原地区所有评估指标都比盆地内差,高原地区需谨慎使用格点风产品。CLDAS对于国家站的各项评估指标都优于ERA5-Land。两种产品与区域站的平均误差,平均绝对误差,均方根误差结果整体相近,但CLDAS对非独立区域站的误差相对更小。ERA5-Land相关性较差,与四川地区实际观测的地面风速变化趋势相反, 不适用于四川。   相似文献   

14.
Research has been conducted to validate monthly and seasonal rain rates derived from the Tropical Rainfall Measuring Mission Precipitation Radar (PR) using rain gauge data analysis from 2004 to 2008. The study area employed 20 gauges across Indonesia to monitor three Indonesian regional rainfall types. The relationship of PR and rain gauge data statistical analysis included the linear correlation coefficient, the mean bias error (MBE), and the root mean square error (RMSE). Data validation was conducted with point-by-point analysis and spatial average analysis. The general results of point-by-point analysis indicated satellite data values of medium correlation, while values of MBE and RMSE tended to indicate underestimations with high square errors. The spatial average analysis indicated the PR data values are lower than gauge values of monsoonal and semi-monsoonal type rainfall, while anti-monsoonal type rainfall was overestimated. The validation analysis showed very good correlation with the gauge data of monsoonal type rainfall, high correlation for anti-monsoonal type rainfall, but medium correlation for semi-monsoonal type rainfall. In general, the statistical error level of monthly seasonal monsoonal type conditions is more stable compared to other rainfall types. Unstable correlations were observed in months of high rainfall for semi-monsoonal and anti-monsoonal type rainfall.  相似文献   

15.
我国高分辨率降水融合资料的适用性评估   总被引:5,自引:1,他引:4  
利用国家气象信息中心研制的全国30000多个地面自动站降水与 CMORPH (Climate Prediction Center Morphing technique)卫星反演降水融合而成的融合降水产品,分析了融合降水平均偏差和均方根误差的时空分布特征,探讨了不同降水量级以及站点稀疏区和密集区的融合效果,结果表明:融合降水的平均偏差和均方根误差量值均较卫星反演降水有显著减小,随时间的变化幅度不大且误差的区域性差异减弱;融合降水不同量级降水日数分布接近于地面观测降水,虽高估了雨强小于等于4 mm/d的降水,低估了大于4 mm/d高值降水,但同一量级下的误差比卫星反演降水大幅减小,且随着降水强度的增加改善效果明显;站点密集区的融合降水值主要是取决于地面观测降水;站点稀疏区在没有站点分布时,融合降水值主要取决于卫星反演降水,但随着站点个数增加,地面观测降水在融合降水中所占比重逐渐增大,且超过了卫星反演降水的作用。可见融合降水充分有效利用了地面观测降水和卫星反演降水各自的优势,融合效果明显。  相似文献   

16.
利用四川省地面自动站2018年6月—2019年5月的逐小时降水观测资料,在邻近插值和双线性插值对比分析的基础上,从晴雨准确率、降水时空特征、降水分量级检验等多个方面,对国家气象信息中心研制的融合降水实况分析产品在四川地区的适用性进行评估分析。评估结果表明:(1)邻近插值和双线性插值对评估结果影响小。(2)融合降水实况分析产品的完整性好,其平均晴雨准确率为92.6%,对探测降水有无存在较大可能。(3)融合降水实况分析产品的数据质量较高,能反映四川区域年内小时降水的时空变化特征,且随着降水量级的增大,误差相应增大,TS评分相应减小,说明在弱降水量级,融合降水实况分析产品与观测降水更接近。(4)非独立检验的效果好于独立检验,盆地的检验效果好于高原、山区等复杂地区,说明参与评估的站点分布、数据质量对评估结果存在一定影响。  相似文献   

17.
为综合评估卫星和天气雷达在2016年6月23日盐城龙卷风期间的强降水过程的降水估测精度,以国家级雨量站观测数据为基准,结合相关系数(CC)、相对误差(RB)、均方根误差(RMSE)以及分级评分指标,利用S波段的天气雷达定量降雨估测产品(RQPE)和全球降水观测计划多卫星融合产品(IMERG_FRCal,IMERG_FRUncal,IMERG_ERCal)进行比较。结果表明,雷达和卫星的累积降水量与雨量站的空间相关性很强(相关系数大于0.9),基本上能捕捉到整个降水过程的空间分布。降水主要分布在江苏省北部,但卫星高估了江苏省东北部强降水中心的降水量;对于小时时序区域平均降水,卫星高估了降水,而雷达低估了累积降水量。综合降水中心区域分析,IMERG的强降水区域降水量与雨量站的时间序列的偏差显著;RQPE在降水峰值达到之前及峰值之后与地面雨量站的变化趋势基本一致,但对降雨量峰值有明显的偏低。RQPE能较为准确地在时间上捕捉到降雨强度的变化趋势,但对于大雨及暴雨的估测能力不佳;RQPE的POD、SCI值都远远高于IMERG, FAR也较小。IMERG几乎未能监测到强降水的发生。总体上,RQPE对此次龙卷风强降水量的估测表现优于3种IMERG产品,特别是在捕捉强降水区域的空间分布方面,但对于强降水的估测能力仍需进一步改善。  相似文献   

18.
青藏高原是全球变化研究的热点区域,气候模式模拟是研究该区域气候变化的重要数据来源。本文使用基于中国地面台站的插值格点数据集(CN05.1),对国际气候耦合模式第5次比较计划(CMIP5)及其高分辨率统计降尺度数据集(NEX-GDDP)中15个模式1966-2005年间的逐日最高/最低气温、降水和平均风速在青藏高原区域的模拟能力进行了评估。使用多领域间影响模型比较计划(ISI-MIP)的偏差校正方法对上述数据进行了训练和验证,并对未来时期模式数据进行了校正。研究表明:(1)训练时期(1986-2005年),NEX-GDDP高估了日最高气温(1.04℃)和日最低气温(0.23℃),低估了日降水量(-0.11 mm),CMIP5低估了日平均风速(-0.11 m·s-1)。年/季平均值/总量和极端值存在较大偏差。(2)校正后,验证时期(1966-1985年)各变量逐日数据的相关系数提高(除气温外),均方根误差下降,平均偏差幅度减小。各变量的年/季平均值/总量和极端值的偏差大幅减小。(3)对于未来时期(2006-2095年),校正过程保留了原有数据年/季平均值/总量和极端值的变化趋势,调整了各要素平均值/总量和极端值的基准值和空间分布特征,以更准确地衔接历史时期的规律,可为该地区未来气候变化及其影响研究提供重要参考。  相似文献   

19.
基于中尺度数值模式WRF,选取新疆两次强降水过程,设计三个试验方案,其中试验1为控制试验,试验2提高分辨率,试验3提高分辨率并调整物理参数化方案,初步评估不同分辨率和参数化方案对新疆区域2米温度、10米风速、降水预报的影响。结果表明:(1)提高分辨率对2米温度、10米风速模拟精度均有提高,2米温度预报精度提高约0.5℃,降低了日间温度模拟冷偏差;10米风速预报精度提高约0.5 m/s,降低了风速模拟正偏差;但提高分辨率后,模式出现虚假降水预报的情况。(2)提高分辨率并调整物理参数化方案后,2米温度模拟误差略有减小,模拟偏差减小约0.2℃;10米风速模拟误差增大约0.5 m/s,模拟偏差增大超过0.5 m/s;对降水落区、量级的模拟精度显著提高,减小了降水中心的模拟强度,对虚假降水预报有一定修正。  相似文献   

20.
称重与人工观测降水量的差异   总被引:1,自引:1,他引:0       下载免费PDF全文
为了更好地使用降水观测数据,对引起称重观测和人工观测的差异原因进行分析,选取北京市15个国家级地面观测站2012年11月—2014年1月称重式降水传感器与人工观测降水量业务资料,探讨称重观测与人工观测累积降水量的差异,并细化为对固态降水和液态降水两种降水类型进行相关性研究。结果表明:称重观测与人工观测日降水量相关系数为0.9990, 88.0%的对比次数中, 两者日降水量差值满足业务要求;在出现固态降水时,称重观测较人工观测降水量偏大,在出现液态降水时,称重观测较人工观测降水量偏小;两者在日降水量等级判断差异较小,小量降水时称重观测的能力较优;防风圈可显著提高称重观测固态降水的捕捉率,而称重观测内筒蒸发对夏季降水测量有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号