首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
东鞍山烧结厂弱磁尾矿 TFe品位为 29.57%,主要以赤铁矿的形式存在,分布率高达 82.21%。矿样粒度 较细,小于38 μm的含量为77.46%,其中铁的分布率达87.19%,有用铁矿物主要分布在细粒级颗粒中。为强化回收矿 样中的微细粒铁矿物,采用桥联团聚—强磁选工艺开展试验研究,以交联玉米淀粉为聚团药剂、水玻璃为分散剂,考察 了药剂用量、矿浆pH值、搅拌强度、背景磁感应强度等因素对分选效果的影响。通过生物光学显微镜和激光粒度仪探 究了矿物颗粒形态及粒度特性。结果表明:在交联玉米淀粉用量250 g/t、水玻璃用量1 500 g/t、矿浆pH值11、搅拌强度 950 r/min、背景磁感应强度 0.8 T、脉冲次数 170次/min的条件下,获得了精矿铁品位 46.70%、铁回收率 72.66% 的良好 指标。与直接磁选结果相比,铁品位降低了0.93个百分点,铁回收率升高了7.59个百分点。添加药剂调浆产生了铁矿 物的絮团,颗粒表观尺寸增加,能够有效回收矿样中的微细粒赤铁矿。  相似文献   

2.
难选矿石中的铁元素多赋存于微细粒弱磁性铁矿物中,随着入选矿石中细粒铁矿物占比增加,细粒铁 矿物在选别过程中的流失现象加重。 为改善微细粒弱磁性铁矿物的回收指标,开展了微细粒赤铁矿的选择性团聚特 性研究。 以预糊化木薯淀粉作絮凝剂,在不同淀粉用量、矿浆 pH 值及搅拌转速下,考察了赤铁矿和石英的团聚效果。 基于单矿物的团聚—沉降试验,采用选择性团聚—强磁选工艺分选东鞍山烧结厂强磁给矿,考察了团聚预处理对分 选指标的影响。 结果表明:在淀粉用量 7. 5 mg / L、矿浆 pH = 10. 0、搅拌转速 500 r / min 时,赤铁矿单矿物有较好的团聚 沉降效果;在淀粉用量 100 g / t、矿浆 pH 值 10. 0、搅拌转速 900 r / min 条件下预处理强磁给矿,经强磁选后获得铁品位 46. 75%、回收率 71. 24%、选矿效率 48. 34%的精矿。 通过光学显微镜观察了团聚前后矿物颗粒的微观形貌,结果表明 团聚处理后赤铁矿的表观粒径显著增加。  相似文献   

3.
针对东鞍山烧结厂强磁选作业尾矿铁品位偏高,现有的强磁设备不能有效回收细粒铁矿物的问题,在强磁给矿样品工艺矿物学研究基础上,基于聚团分选理论,通过聚团强磁选试验详细考察了分散剂及淀 粉用量、强磁分选参数等因素对微细粒铁矿强磁分选效果的影响,通过混磁精矿反浮选试验考察了选择性聚团预处理对反浮选分选指标的影响。聚团强磁选试验结果表明:在水玻璃用量为500 g/t、DLA用量为250 g/t ,搅拌转速为900 r/min、搅拌时间为5 min、矿浆pH值为10.0、冲次为170次/min、矿浆流速为120 mL/s、磁选背景磁感应强度为1.0 T的条件下,可获得铁品位为47.65%、铁回收率为71.54%的磁选指标,与不添加药 剂调浆相比,磁选作业铁回收率提高了4.58个百分点,选矿效率提高了2.42个百分点。混磁精矿反浮选试验结果表明:与常规高梯度强磁选—反浮选工艺相比,采用选择性聚团—高梯度强磁选—反浮选工艺最终获得 的精矿品位变化不大,而混磁精矿铁回收率提高了2.05个百分点,最终浮选精矿铁回收率提高了4.37个百分点。  相似文献   

4.
针对齐大山铁矿选矿分厂反浮选工艺不能有效回收微细粒铁矿物,导致尾矿品位较高的现象,在实验室以石油磺酸钠作为捕收剂和絮凝剂,进行了齐大山铁矿选矿分厂磁选精矿剪切絮凝正浮选研究。结果表明:使磁选精矿发生剪切絮凝的适宜条件为磨矿细度-0.037 mm占85%,矿浆pH=3,石油磺酸钠用量5 kg/t,水玻璃用量300 g/t,搅拌强度2 200 r/min,剪切絮凝时间6 min。在此条件下将磁选精矿剪切絮凝后进行1粗3精1扫闭路浮选,获得了精矿铁品位为66.80%,回收率为95.93%,尾矿铁品位仅5.03%的较好指标。  相似文献   

5.
对酒钢镜铁山周边某微细粒磁铁矿进行了选矿工艺研究。采用Na2CO3+NaOH调整矿浆pH值为11, 以六偏磷酸钠分散矿浆, 添加腐植酸钠进行选择性絮凝磁选, 可获得铁精矿品位63.31%、回收率79.45%, 精矿品位比常规磁选提高了1.77个百分点, 回收率提高了3.36个百分点。  相似文献   

6.
伍喜庆  戴川  戴亮 《矿冶工程》2015,35(1):39-43
利用菱铁矿在碱性溶液中的溶解特性, 无需添加任何铁离子, 通过控制矿浆pH值、反应温度、搅拌速度和时间等因素实现菱铁矿自磁化及其对赤铁矿的协同磁化作用, 使弱磁性铁矿物能被选择性磁选回收。为加强细粒的回收, 考察了六偏磷酸钠用量、非极性油(煤油)用量、油酸钠用量、煤油用量与油酸钠用量比、搅拌速度等因素对疏水絮凝-磁选的影响, 结果表明, 通过自磁化和疏水絮凝的联合作用, 含Fe 42.35%的细粒(-0.038 mm)人工混合矿经0.35 T高梯度磁选机一次磁选可获得Fe品位61.30%、铁回收率90.92%的铁精矿。与其它磁选方法相比, 自磁化-疏水絮凝-磁选流程处理含菱铁矿的细粒弱磁性混合铁矿石, 分选效果较好。  相似文献   

7.
以疏水絮团形式从铁矿石中磁选细粒赤铁矿和褐铁矿   总被引:2,自引:0,他引:2  
本文研究了絮团磁选(FMS)法,即以絮团形式磁选细粒弱磁性铁矿石,以代替强磁选机或高梯度磁选机处理细粒弱磁性铁矿石,本研究用细磨至微米级的赤铁矿和褐铁矿进行,添加油酸钠和煤油引起疏水絮凝,形成大的絮团。试验结果表明,与相同条件下的常规磁选相比,FMS法可以用中场强磁选机有效地回收细粒赤铁矿和褐铁矿,并且获得高的分选效率。FMS法处理铁品位为30.5%的赤铁矿矿石时,获得的精矿品位为64%,回收率为82%。研究发现,FMS法的分选效率与疏水絮凝主要参数(油酸钠用量,搅拌时间和煤油用量)密切相关。这表明,FMS法具有高的分选效率可归因于疏水絮团的形式,使得磁场作用在细粒铁矿物的磁力增大,在磁选机中细粒铁矿物更易附着在齿板上,从而进入磁性精矿中。  相似文献   

8.
对某细粒铁矿石开展了磁选-选择性絮凝脱泥试验研究。结果表明, 矿石中磁铁矿为中细粒嵌布, 赤铁矿为微细粒嵌布, 二者嵌连关系紧密; 采用磨矿-强磁选, 可脱除TFe品位7.57%、产率49.40%的尾矿; 将磁选精矿细磨至-0.037 mm粒级含量98.64%, 在矿浆pH值11.6、矿浆浓度34.6%、腐殖酸钠用量0.5 g/L条件下进行四段选择性絮凝脱泥, 可脱除TFe品位12.20%、作业产率31.20%的矿泥。通过磁选-选择性絮凝脱泥大幅提高了反浮选的入选品位、降低了矿石处理量。  相似文献   

9.
针对东鞍山强磁选抛尾存在粒度小于20μm的微细粒铁矿物流失的问题,研究了不同种类淀粉及其改性产品对微细粒赤铁矿的选择性聚团效果,通过团聚—磁选试验确定了适宜的团聚药剂和用量,借助偏光显微镜和红外光谱等手段检测了药剂与赤铁矿和石英作用前后的形貌特征,最后通过研究高分子药剂的作用机理,论述了药剂的选择性和团聚效果。结果表明:在药剂用量为200 g/t时,交联玉米淀粉的选矿指标优于其他几种药剂,团聚药剂的加入能实现微细粒赤铁矿的选择性聚团,使铁精矿回收率提高2.13~3.94个百分点,选矿效率提高2.77~3.46个百分点,但由于赤铁矿被团聚后呈不规则絮状,在较大的聚团中会夹杂少量石英,导致磁选精矿铁品位略微降低。  相似文献   

10.
梅山强磁选尾矿强磁再选—分步浮选试验研究   总被引:4,自引:1,他引:3  
杨龙  韩跃新  袁志涛 《金属矿山》2010,39(4):183-186
梅山铁矿石中弱磁性铁矿物含量很高,主要为赤铁矿和菱铁矿,造成强磁选尾矿的铁品位高,有较多的的赤铁矿和菱铁矿没有被回收。对该尾矿先采用较高的磁场强度进行强磁再选,然后再对强磁再选精矿通过分步浮选进行菱铁矿与其他矿物的分离及赤(褐)铁矿与脉石矿物的分离。试验获得的最终精矿铁品位为42.75%,高于目前生产过程中强磁扫选的精矿品位,略低于强磁粗选的精矿品位,可以提高梅山铁矿选矿厂铁回收率5个百分点以上。  相似文献   

11.
某微细粒嵌布铁矿石磁选—絮凝脱泥—反浮选试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2015,44(2):53-57
湖南某铁矿石中铁矿物以磁铁矿为主,赤铁矿次之,并有12.12%的铁以硅酸盐矿物形式存在。其中磁铁矿属中细粒嵌布,但赤铁矿具典型极微细粒嵌布特征,分选难度极大。根据矿石性质,采用阶段磨矿—弱磁选—强磁选—选择性絮凝脱泥—反浮选工艺进行选矿试验,即第1步在-0.075 mm占65.87%的较粗磨矿细度下通过弱磁选选出磁铁矿,第2步通过强磁选抛尾富集弱磁选尾矿中的赤铁矿,第3步对强磁选精矿进行2段阶段细磨(一段磨至-0.038 mm占96.56%,二段磨至-0.019 mm占98.93%)、4段加磁种的选择性絮凝脱泥(以所得磁铁矿精矿为磁种,与强磁选精矿一起细磨),第4步对脱泥沉砂进行1粗1精4扫反浮选,最终获得了产率为32.33%、铁品位为63.55%、铁回收率为71.34%的综合铁精矿,从而为该矿石的合理开发利用提供了技术支撑。  相似文献   

12.
鞍千贫赤铁矿石铁品位为16.67%,铁主要以赤铁矿的形式存在,铁在赤铁矿中分布率为72.77%,主要脉石矿物为石英。为了开发利用该低品位铁矿石,进行了预富集试验。结果表明:采用湿式强磁预选-磨矿-弱磁选-强磁选工艺预富集,矿石在给料粒度-3 mm、背景磁感应强度为0.8 T、立环转速2.0 r/min、冲次频率200次/min条件下强磁预选,预选精矿在磨矿细度-200目占95%,磁场强度为120 kA/m条件下弱磁选,背景磁感应强度为0.8 T条件下强磁选,可获得TFe品位47.04%、回收率为80.25%的预富集精矿。试验结果可以为我国贫赤铁矿石的强磁预选提供参考。  相似文献   

13.
随着鞍千入选矿石性质的变化,原有的工艺流程暴露出一些问题,如重选精矿品位低、浮选尾矿损失大等。针对鞍千半自磨—湿式预选的混磁铁精矿,进行了详细的工艺矿物学研究,并确定了搅拌磨细磨—磁选—反浮选短流程工艺。研究结果表明,混磁精矿中铁品位为42.91%,主要含铁矿物为磁铁矿和赤铁矿,其他金属矿物为少量黄铁矿,赤铁矿和磁铁矿与脉石矿物结合形成的连生体含量较多,且在细粒级中分布率均较高;在此基础上确定了搅拌磨细磨—弱磁选—弱磁尾矿强磁选—强磁精矿一次粗选一次精选三次扫选的工艺流程,弱磁精矿和反浮选精矿合并得到的综合精矿TFe品位67.68%、回收率91.88%,综合尾矿TFe品位为8.83%。本研究对于鞍山式赤铁矿石流程的优化具有重要的指导意义。  相似文献   

14.
某微细粒嵌布复杂铁矿的选矿工艺流程研究   总被引:2,自引:0,他引:2  
矿石中铁矿物主要以不规则状产出,粒度以微、细粒为主,嵌布关系复杂,且矿物种类繁多,主要为赤铁矿、假象赤铁矿,其次为磁铁矿、褐铁矿、针铁矿及少量菱铁矿,尚有微量磁赤铁矿、自然铁、磷铁矿等;脉石矿物主要为石英,其它是辉石、绿泥石、云母、长石、黏土矿物等;本研究采用合理多段、适当细磨工艺,强化微、细粒赤铁矿及假象赤铁矿的回收。试验推荐重选—磁选—反浮选联合流程,获得品位为67.79%、回收率为83.23%的铁精矿。  相似文献   

15.
鞍山某复杂难选铁矿石铁含量为31.12%,主要以赤铁矿、磁铁矿形式存在,脉石矿物主要是石英。为确定预选—磁化焙烧—弱磁选工艺处理该铁矿石的可行性,进行了选矿试验研究,着重研究了焙烧温度、还原气氛CO浓度、焙烧时间和焙烧产物磨矿细度对铁精矿产品指标的影响。结果表明,在焙烧温度为560℃,CO浓度为30%,焙烧时间为10 min,焙烧产品磨矿细度为-0.038 mm占92.85%,弱磁选磁场强度为103.45 kA/m条件下,可获得铁品位为64.63%、回收率为92.01%的铁精矿。预选—磁化焙烧—弱磁选工艺是该复杂难选铁矿石的高效开发与利用工艺。  相似文献   

16.
韩会丽  印万忠  姚金 《金属矿山》2016,45(12):71-76
东鞍山磁选混合精矿主要有用矿物为赤铁矿以及少量的菱铁矿和磁铁矿,脉石矿物主要为石英,铁矿物多呈细颗粒存在,铁在-37 μm粒级分布率达到82.55%。为实现东鞍山含碳酸盐磁选混合精矿中铁矿物的有效分选,采用分步与分散协同浮选工艺进行试验。结果表明:以柠檬酸为分散剂、淀粉为抑制剂、KS-Ⅲ为捕收剂经菱铁矿1次正浮选,正浮选尾矿以NaOH为pH调整剂、淀粉为抑制剂、CaO为活化剂、KS-Ⅲ为捕收剂经1粗1精2扫赤铁矿反浮选闭路试验,获得了铁品位为67.89%、回收率为69.35%的铁精矿。分步与分散协同浮选通过将分步浮选工艺和分散浮选技术结合起来形成协同作用而对含碳酸盐难选铁矿石产生了较好的分选效果。  相似文献   

17.
宣龙式鲕状赤铁矿石磁化焙烧—弱磁选试验   总被引:1,自引:0,他引:1  
宣龙式鲕状赤铁矿石铁品位较高,达48.65%,主要铁矿物为赤铁矿,占总铁的85.84%,其次是碳酸铁,占总铁的9.50%,磁性铁含量较低,仅占总铁的3.12%;脉石矿物主要为石英,磷、铝等有害元素含量均不高。为探索该资源的高效、低耗开发利用方案,采用磁化焙烧—弱磁选工艺进行了选矿试验研究。结果表明,0.2~0 mm的烟煤与-0.074 mm占62%的试样按质量比12%混合,在800℃下焙烧45 min,焙烧产物磨至-0.074 mm占89.2%的情况下进行弱磁选(磁场强度为105.6 k A/m),可得到铁品位为62.50%、铁回收率为85.50%的铁精矿。因此,磁化焙烧—弱磁选工艺适合处理宣龙式鲕状赤铁矿石。  相似文献   

18.
某铁矿石铁品位是56.36%,主要以赤褐铁矿的形式存在,脉石矿物主要是石英和铝土矿。对该铁矿石采用了悬浮磁化焙烧—磁选工艺实验研究,在给料粒度为-0.074 mm 56.11%,焙烧温度为560℃,总气量为500 mL/min、CO浓度为30%,还原时间为15 min的条件下进行焙烧实验,然后将焙烧产品磨至-0.074 mm 95%,在磁场强度90 kA/m,选别时间5 min的条件下进行弱磁选实验,获得了铁品位64.42%,铁回收率94.49%的高品位铁精矿,为处理难选铁矿石提供了解决办法。   相似文献   

19.
东鞍山铁矿石因矿石中碳酸盐含量高而难以选别,为寻找适宜的浮选组合调整剂及其用量,提高选别指标,分别以淀粉和CaCl2及其组合为调整剂考察了添加调整剂对赤铁矿、磁铁矿、菱铁矿、铁白云石、石英单矿物可浮性的影响。结果表明:仅添加单一淀粉或CaCl2均不能实现铁矿物与石英的分离,当淀粉与CaCl2组合使用且pH>11时,石英与铁矿物可浮性差异较大。对东鞍山现场铁品位为50.88%的混磁精采用淀粉与CaCl2为组合调整剂,RA715为捕收剂经1粗1精浮选试验,获得了铁品位为64.06%、回收率为61.96%的浮选精矿,与现场工艺指标相比,铁品位和回收率分别提高了1.33和6.01个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号