首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice.  相似文献   

2.
Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid β-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and β-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid β-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote β-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating β-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.  相似文献   

3.
4.
Honokiol and magnolol, as pharmacological biphenolic compounds of Magnolia officinalis, have been reported to have antioxidant and anti-inflammatory properties. Sterol regulatory element binding protein-1 c (SREBP-1 c) plays an important role in the development and processing of steatosis in the liver. In the present study, we investigated the effects of a combination of honokiol and magnolol on SREBP-1 c-dependent lipogenesis in hepatocytes as well as in mice with fatty liver due to consumption of high-fat diet (HFD). Liver X receptor α (LXRα) agonists induced activation of SREBP-1 c and expression of lipogenic genes, which were blocked by co-treatment of honokiol and magnolol (HM). Moreover, a combination of HM potently increased mRNA of fatty acid oxidation genes. HM induced AMP-activated protein kinase (AMPK), an inhibitory kinase of the LXRα-SREBP-1 c pathway. The role of AMPK activation induced by HM was confirmed using an inhibitor of AMPK, Compound C, which reversed the ability of HM to both inhibit SREBP-1 c induction as well as induce genes for fatty acid oxidation. In mice, HM administration for four weeks ameliorated HFD-induced hepatic steatosis and liver dysfunction, as indicated by plasma parameters and Oil Red O staining. Taken together, our results demonstrated that a combination of HM has beneficial effects on inhibition of fatty liver and SREBP-1 c-mediated hepatic lipogenesis, and these events may be mediated by AMPK activation.  相似文献   

5.
6.
7.
Fatty liver is associated with obesity and breast cancer. We used an obese rat model of mammary cancer to examine whether hepatosteatosis is modifiable by diet and associated with altered expression of hepatic lipogenic enzyme genes, thyroid hormone system genes and cholesterol metabolism-related genes. Beginning at the age of 5 weeks, lean and obese female Zucker rats were fed high-isoflavone soy protein- or casein (control protein)-containing diets. Rats were euthanized at 200 days of age [corresponding to 147 days after administration of carcinogen to induce mammary tumors; (Hakkak et al. in, Oncol Lett 2:29–36, 2011)]. Obese rats had a greater degree of liver steatosis than lean rats. Obese casein-fed rats had marked steatosis with small foci of mononuclear infiltration, whereas obese soy protein-fed rats had a significantly lower steatosis index. Comparisons between lean and obese casein-fed rats showed that obesity was associated with significant reductions in hepatic mRNA abundance for Glucose 6-Phosphate Dehydrogenase (G6PD), 6-Phosphogluconate Dehydrogenase (6PGD), Thyroid Receptor Alpha 1 (TRα1), Thyroid Receptor Beta 1 (TRβ1) and Iodothyronine Deiodinase 1 (DIO1). The soy protein diet was associated with increased expression of Fatty Acid Synthase (FASN), Malic Enzyme 1 (ME1), 6PGD, Sterol Regulatory Element Binding Protein-1c (SREBP-1c) and SREBP-2 genes in the livers of obese but not lean rats. Western blot analysis showed a significant induction of ME1 protein expression in the livers of obese, soy protein-fed rats, which paralleled the increased serum insulin level in this group. Long-term soy protein consumption can counter hepatic steatosis while coincidently promoting hepatic lipogenic gene expression, the latter likely a consequence of elevated serum insulin. We suggest that elevations in serum insulin, hepatic lipogenesis and cholesterol synthesis all contributed to the increased tumorigenesis previously observed for the obese, soy protein-fed rats.  相似文献   

8.
Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001), and apoB secretion 1.5 fold(p<0.003). Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).  相似文献   

9.
10.
11.
12.
Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders.In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via β-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying β-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling. Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of β-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.  相似文献   

13.
14.
In response to overfeeding, the Landes goose develops a fatty liver that is twice as large as that of the Poland goose, despite similar food intake. The role of hepatic lipogenesis in the genetic susceptibility to fatty liver was assessed in male overfed geese of the two breeds. For a similar hepatic protein content, total activities of malic enzyme, glucose-6-phosphate dehydrogenase, acetyl-Coa-carboxylase and fatty acid synthase, and specific activity and mRNA level of malic enzyme were about two-fold higher in the Landes goose. In the Poland goose, the weight of the fatty liver was correlated positively with the specific activity of ME and the VLDL concentration, which was not the case in the Landes breed. These results show that: (1) hepatic lipogenesis remains very active until the end of the overfeeding period; (2) the pentose-phosphate pathway may function in birds, contrary to what is assumed usually; (3) the level of hepatic lipogenesis is a major factor in the susceptibility to hepatic steatosis in different breeds of geese; and (4) ME activity may be a limiting factor of lipid synthesis in the less susceptible Poland breed.  相似文献   

15.
In utero exposure to maternal obesity increases the offspring''s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD.  相似文献   

16.
17.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid deposition and oxidative stress. It has been demonstrated that general control nonderepressible 2 (GCN2) is required to maintain hepatic fatty acid homeostasis under conditions of amino acid deprivation. However, the impact of GCN2 on the development of NAFLD has not been investigated. In this study, we used Gcn2?/? mice to investigate the effect of GCN2 on high fat diet (HFD)-induced hepatic steatosis. After HFD feeding for 12?weeks, Gcn2?/? mice were less obese than wild-type (WT) mice, and Gcn2?/? significantly attenuated HFD-induced liver dysfunction, hepatic steatosis and insulin resistance. In the livers of the HFD-fed mice, GCN2 deficiency resulted in higher levels of lipolysis genes, lower expression of genes related to FA synthesis, transport and lipogenesis, and less induction of oxidative stress. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, palmitic acid-induced steatosis, oxidative & ER stress, and changes of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS) and metallothionein (MT) expression in HepG2 cells. Collectively, our data provide evidences that GCN2 deficiency protects against HFD-induced hepatic steatosis by inhibiting lipogenesis and reducing oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in the liver may provide a novel approach to attenuate NAFLD development.  相似文献   

18.
Secreted frizzled-related protein (sFRP) 4 is an adipokine with increased expression in white adipose tissue from obese subjects with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Yet, it is unknown whether sFRP4 action contributes to the development of these pathologies. Here, we determined whether sFRP4 expression in visceral fat associates with NAFLD and whether it directly interferes with insulin action and lipid and glucose metabolism in primary hepatocytes and myotubes. The association of sFRP4 with clinical measures was investigated in obese men with or without type 2 diabetes and with or without biopsy-proven NAFLD. To determine the impact of sFRP4 on metabolic parameters, primary human myotubes (hSkMC), or primary hepatocytes from metabolic healthy C57Bl6 and from systemic insulin-resistant mice, i.e. aP2-SREBP-1c, were used. Gene expression of sFRP4 in visceral fat from obese men associated with insulin sensitivity, triglycerides and NAFLD. In C57Bl6 hepatocytes, sFRP4 disturbed insulin action. Specifically, sFRP4 decreased the abundance of IRS1 and FoxO1 together with impaired insulin-mediated activation of Akt-signalling and glycogen synthesis and a reduced suppression of gluconeogenesis by insulin. Moreover, sFRP4 enhanced insulin-stimulated hepatic de novo lipogenesis (DNL). In hSkMC, sFRP4 induced glycolysis rather than inhibiting insulin signalling. Finally, in hepatocytes from aP2-SREBP-1c mice, sFRP4 potentiates existing insulin resistance. Collectively, we show that sFRP4 interferes with hepatocyte insulin action. Physiologically, sFRP4 promotes DNL in hepatocytes and glycolysis in myotubes. These sFRP4-mediated responses may result in a vicious cycle, in which enhanced rates of DNL and glycolysis aggravate hepatic lipid accumulation and insulin resistance.  相似文献   

19.
20.
Peroxisome proliferator activated-receptor (PPAR) isoforms, alpha and gamma, function as important coregulators of energy (lipid) homeostasis. PPARalpha regulates fatty acid oxidation primarily in liver and to a lesser extent in adipose tissue, whereas PPARgamma serves as a key regulator of adipocyte differentiation and lipid storage. Of the two PPARgamma isoforms, PPARgamma1 and PPARgamma2 generated by alternative splicing, PPARgamma1 isoform is expressed in liver and other tissues, whereas PPARgamma2 isoform is expressed exclusively in adipose tissue where it regulates adipogenesis and lipogenesis. Since the function of PPARgamma1 in liver is not clear, we have, in this study, investigated the biological impact of overexpression of PPARgamma1 in mouse liver. Adenovirus-PPARgamma1 injected into the tail vein induced hepatic steatosis in PPARalpha(-/-) mice. Northern blotting and gene expression profiling results showed that adipocyte-specific genes and lipogenesis-related genes are highly induced in PPARalpha(-/-) livers with PPARgamma1 overexpression. These include adipsin, adiponectin, aP2, caveolin-1, fasting-induced adipose factor, fat-specific gene 27 (FSP27), CD36, Delta(9) desaturase, and malic enzyme among others, implying adipogenic transformation of hepatocytes. Of interest is that hepatic steatosis per se, induced either by feeding a diet deficient in choline or developing in fasted PPARalpha(-/-) mice, failed to induce the expression of these PPARgamma-regulated adipogenesis-related genes in steatotic liver. These results suggest that a high level of PPARgamma in mouse liver is sufficient for the induction of adipogenic transformation of hepatocytes with adipose tissue-specific gene expression and lipid accumulation. We conclude that excess PPARgamma activity can lead to the development of a novel type of adipogenic hepatic steatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号