首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to compare the effects of manganese sulphate (Mn‐S), glycine manganese(Mn‐Gly) and manganese 2‐hydroxy‐4‐(methylthio)butyrate (Mn‐HMB) on juvenile cobia, Rachycentron canadum L. Treatments consisted of 0, 2, 4, 8, 16 or 32 mg supplemental Mn kg?1 from Mn‐S, Mn‐Gly or Mn‐MHB. Growth performance, manganese status, antioxidant activities and tissue mineral content were analysed after a 70‐day feeding period. Specific growth rate (SGR) increased with feeding 6.29 to 12.65 mg Mn kg?1 diet from the Mn‐S or 6.86 to 12.39 mg Mn kg?1 from the Mn‐Gly or 6.50 to 8.33 mg Mn kg?1 from the Mn‐HMB and then plateaued above these levels. Feed conversion ratio (FCR) show decreasing first and then increased trend. Survival rate (SR) were not affected by the dietary treatments (> 0.05). Fish fed diets supplemented with manganese at levels of 4–32 mg Mn kg?1 had obviously higher hepatic Mn‐SOD activity (< 0.05); on the contrary, hepatic has lower malondialdehyde (MDA) content (< 0.05) than fish fed the basal diet. The manganese concentrations of whole body and vertebrae increased with increasing dietary Mn levels from 2–32 mg Mn kg?1 (independent on manganese sources). Dietary Mn supplementation did not significantly influence the copper concentrations of whole body and vertebrae, the zinc concentrations of whole body and liver. Analysis by the broken‐line regression of SGR indicated that the optimal dietary Mn requirements in juvenile cobia were 15.42, 11.22 and 10.50 mg Mn kg?1 diet from Mn‐S, Mn‐Gly or Mn‐HMB respectively.  相似文献   

2.
This experiment was conducted to study the effects of different forms and levels of manganese (Mn) on the growth performance, antioxidant activities, tissue Mn content and cytosolic manganese superoxide dismutase (cMnSOD) gene expression of Litopenaeus vannamei. Treatments consisted of 0, 10, 20, 30, 40 and 60 mg Mn kg?1 from manganese sulphate (Mn‐S) and manganese methionine (Mn‐Met), providing the actual dietary value of 5.17, 15.62, 25.55, 34.22, 44.48 and 67.90 mg Mn kg?1 Mn‐S, and 5.17, 15.71, 25.36, 35.86, 45.16 and 65.06 mg Mn kg?1 Mn‐Met, respectively. Each diet was fed to triplicate groups of L. vannamei (initial body weight: 1.925 ± 0.002 g) in a recirculated fresh water rearing system for 8 weeks. Weight gain rate (WGR) increased in prawns provided with from 25.55 to 44.48 mg Mn kg?1 Mn‐S and 15.71 to 45.16 mg Mn kg?1 Mn‐Met and then declined above these levels. The lowest protein efficiency ratio (PER) and the highest feed conversion rate (FCR) were observed in prawns fed the control diet (< 0.05) and showed no significant differences among other treatments (> 0.05). Survival rate (SR) was not affected by the dietary treatments (> 0.05). Total SOD and Mn‐SOD activities were higher in the hepatopancreas of prawns fed with Mn‐supplemented diets from 15.71 to 44.48 mg Mn kg?1 (< 0.05). On the contrary, malondialdehyde (MDA) content was lower in the hepatopancreas of prawns fed the basal diet (< 0.05). Mn concentrations in the hepatopancreas and muscles increased with increasing levels of dietary Mn supplementation. Moreover, Mn accumulation was lower in the muscle than in the hepatopancreas of the prawns. The mRNA expression of cMnSOD gene in the hepatopancreas of prawns was upregulated with increasing dietary Mn levels of Mn‐S from 25.55 to 44.48 mg Mn kg?1, Mn‐Met from 15.71 to 45.16 mg Mn kg?1 and then plateaued above these levels. Broken‐line regression analysis of WGR indicated that the optimal dietary Mn requirements for juvenile L. vannamei were 32.26 mg Mn kg?1 Mn‐S and 23.90 mg Mn kg?1 Mn‐Met, respectively.  相似文献   

3.
A 10‐week feeding trial was conducted to estimate the optimum dietary selenium (Se) requirement for juvenile cobia, Rachycentron canadum L. The basal diet was formulated to contain 50.6% crude protein from vitamin‐free casein, gelatin. A control diet (no added seleno‐dl ‐methionine) and five experimental diets containing 0.20, 0.40, 0.60, 0.80 and 1.00 mg seleno‐dl ‐methionine kg?1 were prepared. Each diet was randomly fed to triplicate groups of juvenile cobia with initial weight 6.27±0.03 g in a flow‐through system. The Se concentration in rearing water was monitored during the feeding period, and was not detectable. The dietary Se level significantly influenced the survival, specific growth rate (SGR), feed efficiency and the Se concentrations in the whole body and vertebra of cobia. The Se‐dependent glutathione peroxidase (EC 1.11.119) activity increased with an increase in the dietary Se levels (P<0.05). Hepatic glutathione reductase (EC 1.6.4.2) activity was the highest in fish fed the diet with 0.21 mg Se kg?1, and declined with an increase in the dietary Se levels. Based on broke‐line regression of SGR, the Se concentration in the whole body and vertebra, the Se requirements of juvenile cobia were 0.788, 0.811 and 0.793 mg Se kg?1 diet in the form of seleno‐dl ‐methionine respectively.  相似文献   

4.
A 10‐week feeding trial was conducted in a flow‐through system to determine dietary choline requirement for juvenile gibel carp (Carassius auratus gibelio) (5.5 ± 0.1 g). Purified basal diet was formulated using vitamin‐free casein as protein source. Choline chloride was supplemented to the basal diet to formulate seven diets containing 76.1, 163, 356, 969, 1457, 2024 and 4400 mg kg?1 choline. Dietary methionine was 0.58%, less than the requirement (0.69%). The results indicated that specific growth rate (SGR) was higher in the fish fed 2024 mg kg?1 diet than the control group. Feeding rate and feed efficiency were not significantly affected. Protein productive value increased as dietary choline increased from 76.1 to 2024 mg kg?1 diet and was lower in the fish fed the diet containing 4400 mg choline kg?1 diet. Serum high‐density lipoprotein cholesterol (HDL‐C) and total cholesterol significantly increased with increasing dietary choline up to 1457 mg kg?1, and no differences were found with further increase. Fish carcass fat contents decreased significantly with increased dietary choline. Hepatic lipid contents increased with dietary choline up to 1457 mg kg?1 and then decreased. Quadric regression of SGR and plasma HDL‐C indicted dietary choline requirement was 2500 and 2667 mg kg?1 diet, respectively.  相似文献   

5.
A growth trial was conducted to evaluate the effects of chelated (Mintrex? Mn, Mn‐M) or inorganic (MnSO4·H2O, Mn‐S) manganese (Mn) on growth, feed utilization, tissue Mn deposition and liver superoxide dismutase (SOD) activity in turbot Scophthalmus maximus. A semi‐purified basal diet was formulated to be deficient in Mn (3.7 mg kg?1) and contained tricalcium phosphate and sodium phytate at levels of 20 and 5 g kg?1, respectively. Ten other diets were made by adding five levels (5, 10, 20, 35 and 55 mg Mn kg?1 diet) of either the Mn‐M or Mn‐S to the basal diet, respectively. The 11 experimental diets were fed to groups of turbot (mean initial weight: 4.6 g) for 8 weeks. Results showed that the specific growth rate (SGR), feed intake, whole body Mn/vertebra Mn concentration and Mn‐SOD activity in liver were significantly improved by Mn supplementation (< 0.05). On the basis of SGR, vertebra Mn concentration or liver Mn‐SOD activity data, dietary Mn requirement was estimated to be 10.5, 46.3 or 12.9 mg kg?1 for turbot fed Mn‐S, and the same was estimated to be 7.6, 43.0 or 22.5 mg kg?1 for turbot fed Mn‐M, respectively. There was no significant difference in growth, feed intake, whole body Mn concentration or vertebra Mn concentration between the two dietary Mn sources (> 0.05).  相似文献   

6.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

7.
This study evaluated the effect of dietary thiamin on growth performance, feed utilization and non‐specific immune response for juvenile Pacific white shrimp, Litopenaeus vannamei. Six isonitrogenous and isolipidic practical diets were formulated with graded thiamin levels of 6.9, 32.7, 54.2, 78.1, 145.1 and 301.5 mg kg?1 of dry diet, respectively. Each diet was randomly assigned to triplicate groups of 30 juvenile shrimp and provided four times each day to apparent satiation. Weight gain (WG) and specific growth rate (SGR) of the shrimp were significantly influenced by the dietary thiamin levels, the maximal WG and SGR occurred at 54.2 mg kg?1 dietary thiamin level. However, with further increase in dietary thiamin level from 54.2 to 301.5 mg kg?1, the WG and SGR significantly decreased. Shrimp fed the 54.2 mg kg?1 thiamin diet exhibited higher feed efficiency, protein efficiency ratio and protein productive value than those fed the other diets. Dry matter and protein content in whole body were significantly affected by the dietary thiamin levels. Thiamin concentration in hepatopancreas significantly increased when the dietary thiamin level increased from 6.9 to 145.1 mg kg?1. The total protein, glucose, triacylglycerol and cholesterol contents in hemolymph were not significantly affected by the dietary thiamin levels. Dietary thiamin had significantly influenced superoxide dismutase, catalase and lysozyme activities in hemolymph. Results of this study indicated that the optimal dietary thiamin requirements estimated using a two‐slope broken‐line model based on WG and thiamin concentration in hepatopancreas were 44.66 and 152.83 mg kg?1, respectively.  相似文献   

8.
A 12‐week feeding trial was conducted to evaluate the effects of dietary vitamin C on growth performance, antioxidant status and innate immune responses in juvenile yellow catfish, Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets (44% crude protein and 7% lipid) were formulated to contain six graded dietary vitamin C (ascorbate‐2‐poly‐ phosphate, ROVIMIX® STAY‐C® 35) levels ranging from 1.9 to 316.0 mg kg?1 diet. The results of present study indicated that fish fed the lowest vitamin C diet had lower weight gain (WG) and specific growth rate (SGR) than those fed the diets supplemented vitamin C. WG and SGR did significantly increase with dietary vitamin C levels increasing from 1.9 to 156.5 mg kg?1. However, no significant increase was observed with further dietary vitamin C levels increasing from 156.5 to 316 mg kg?1. Survival, protein efficiency ratio and feed efficiency were not significantly affected by the dietary vitamin C levels. The activities of serum superoxide dismutase, catalase and glutathione peroxidase significantly increased when dietary vitamin C levels increased from 1.9 to 156.5 mg kg?1, fish fed the lowest vitamin C diet had higher serum malondialdehyde content than those fed the diets supplemented with vitamin C. Fish fed the diet containing 156.5 mg kg?1 vitamin C had the highest lysozyme, total complement activity, phagocytosis index and respiratory burst of head kidney among all treatments. The challenge test with Aeromonas hydrophila indicated that lower cumulative survival was observed in fish fed the lowest vitamin C diet. Analysis by broken‐line regression of SGR and lysozyme activity indicated that the dietary vitamin C requirement of juvenile yellow catfish was estimated to be 114.5 and 102.5 mg kg?1 diet, respectively.  相似文献   

9.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

10.
This study was conducted to determine dietary thiamine requirement of juvenile Sclizothorax prenanti and evaluate the effect of dietary thiamine levels on growth performance, body composition and haemato‐biochemical parameters for this fish species. The seven experimental diets were formulated to contain the graded levels of thiamine (0, 10, 20, 30, 40, 60 and 100 mg kg?1 diet, respectively), providing the actual dietary thiamine values of 0.31 (control), 9.82, 21.49, 29.83, 41.66, 62.24 and 114.58 mg kg?1 diet, respectively. Each diet was assigned to three replicate groups of S. prenanti (initial body weight: 13.46 ± 0.28 g, means ± SD) for 60 days. Increasing dietary thiamine level up to 21.49 mg kg?1 diet increased weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) (< 0.05), beyond which they remained nearly unchanged. Similarly, hepatic thiamine concentration and several serum biochemical parameters (transketolase activity, triglyceride and total cholesterol contents) increased with increasing levels of thiamine up to 21.49 mg kg?1 diet (< 0.05) and, thereafter, remained almost constant. However, no significant differences in body composition (moisture, protein, lipid and ash contents) were found among dietary thiamine treatments (P > 0.05). Analysis by the broken‐line regression of WGR, SGR, FE, PER, hepatic thiamine concentration and serum transketolase activity indicated that dietary thiamine requirements in juvenile S. prenanti were 18.45–25.91 mg kg?1 diet.  相似文献   

11.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

12.
This study investigated the effects of dietary niacin on growth performance, feed utilization and non‐specific immune response in juvenile Pacific white shrimp. Six isonitrogenous and isolipidic practical diets were formulated with graded niacin levels of 10.9, 65.8, 121.2, 203.4, 387.5 and 769.3 mg kg?1 of dry diet, respectively. Results indicated that per cent weight gain (WG), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER) and protein productive value (PPV) were significantly influenced by the dietary niacin levels. The maximum WG and SGR occurred at 121.2 mg kg?1 niacin diet. However, survival and proximate composition of whole body were not significantly affected by the dietary niacin levels. Dietary niacin levels had no significant effects on the total protein, glucose, triacylglycerol and cholesterol contents in the haemolymph. The activity of catalase and lysozyme in the haemolymph was significantly affected by dietary niacin levels. Based on a two‐slope regression analysis of SGR against dietary niacin level, the dietary niacin requirement of juvenile Pacific white shrimp was 109.6 mg kg?1.  相似文献   

13.
To study the effects of manganese on growth performance, digestive and absorptive abilities, as well as the antioxidative capacity in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idellus Val.) (264 ± 1 g) were fed diets containing graded levels of manganese at 3.65 (control), 8.62, 13.48, 18.24, 22.97 and 27.86 mg kg?1 diet for 8 weeks. Per cent weight gain (PWG) and feed intake were the poorest in fish fed the basal diet (< 0.05). The activities of trypsin, lipase and alkaline phosphatase in the intestine were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (P < 0.05). Additionally, in the hepatopancreas and intestine, the protein carbonyl and malondialdehyde contents were the lowest in fish fed the diet with dietary manganese level at 13.48 mg kg?1 diet (< 0.05), while the anti‐hydroxyl radical capacities, manganese superoxide dismutase (MnSOD), glutathione peroxidase and glutathione‐S‐transferase activities were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (< 0.05). Moreover, the catalase activity and glutathione content in the intestine were the highest in fish fed the diet with dietary manganese level at 18.24 mg kg?1 diet (< 0.05). These results indicated that optimum dietary manganese promoted growth, enhanced the digestive and absorptive abilities, and improved the antioxidative capacity in young grass carp. Based on the quadratic regression analysis for PWG and intestinal MnSOD activity, the manganese requirements for young grass carp with the initial body weight of 264 g were 16.91 and 18.21 mg kg?1 diet respectively.  相似文献   

14.
A 9‐week feeding trial was conducted to determine the optimal dietary vitamin C requirement and its effects on serum enzymes activities and bacterial resistance in the juvenile yellow drum Nibea albiflora (initial weight 33.2 ± 0.10 g). Six practical diets were formulated containing vitamin C 2.1, 45.3, 89.6, 132.4, 178.6 and 547.1 mg kg?1 diet supplied as l ‐ascorbyl‐2‐monophosphate. The fish fed 547.1 mg kg?1 diet showed a significantly higher survival than that fed 2.1 mg kg?1 diet. The weight gains and specific growth rate of the fish fed 2.1 mg kg?1 diet were significantly lower than those of the fish fed 89.6–547.1 mg kg?1 diets. The liver vitamin C concentration firstly increased with increasing dietary vitamin C supply from 2.1 to 178.6 mg kg?1 diet and then stabilized. The serum superoxide dismutase activities of the fish fed 547.1 mg kg?1 diet were significantly lower than those of the fish fed 2.1–89.6 mg kg?1 diet. The fish fed 2.1 mg kg?1 diet had a significantly higher alkaline phosphatase activity than those in the other groups except the 45.3 mg kg?1 group. Fish that received diets containing vitamin C at 547.1 mg kg?1 had significantly higher nitro blue tetrazolium and lysozyme activity, and fish that received diets containing vitamin C at 45.3–547.1 mg kg?1 exhibited resistance against Vibrio alginolyticus infection. The dietary vitamin C requirement of the juvenile yellow drum was established based on broken‐line model of weight gain to be 142.2 mg l ‐ascorbyl‐2‐monophosphate kg?1 diet.  相似文献   

15.
An 8‐week study was conducted to determine folic acid requirement and its effect on antioxidant capacity and immunity in juvenile Chinese mitten crab Eriocheir sinensis (Milne‐Edwards, 1853), followed by a challenge assay with the pathogen Aeromonas hydrophila for 2 weeks. Folic acid was added to a basal diet at seven levels (0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 mg folic acid kg?1 diet), and a diet free of folic acid and vitamin B12 was also included as a control. Crabs were fed twice daily in 32 tanks with 7.76–8.17 mg oxygen L?1, 25.0–31.0 °C and 7.5–8.3 pH. Growth and feed efficiency were significantly greater in crabs fed ≥2.0 mg folic acid kg?1, but not significantly different between crabs fed diets >2.0 mg folic acid. The superoxide dismutase activity and glutathione S‐transferase activity were highest in crabs fed ≥2.0 mg folic acid kg?1, followed by those fed 0.5 and 1.0 mg folic acid kg?1, and the control diet. The malondialdehyde content was highest in crabs fed the control diet, followed by those fed 0 mg folic acid kg?1, and the lowest value occurred in those fed ≥0.5 mg folic acid kg?1. Phenoloxidase activity and total haemocytes were significantly higher in crabs fed ≥2.0 mg folic acid kg?1 than other diets. Crabs fed 2.0 mg folic acid kg?1 had the highest lysozyme, acid phosphatase and alkaline phosphatase activities but the lowest cumulative mortality. The optimum dietary folic acid requirement by E. sinensis was estimated at 2.29–2.90 mg kg?1 diet.  相似文献   

16.
The aim of this study was to examine the effects of the immunostimulant combination (IC) containing β‐glucan, A3α‐peptidoglycan, vitamin C and vitamin E on the growth performance, non‐specific immunity and protection against Vibrio harveyi infection in cobia (Rachycentron canadum). Fish were fed diets containing six graded levels of IC (0, 1, 2, 3, 4 and 5 g kg?1 diet) for 8 weeks. The results showed that the survival rate ranged from 81.1 to 84.4% with no significant difference among all the groups (P > 0.05) after the feeding experiment. Dietary IC significantly increased the specific growth rate (SGR), serum lysozyme, alternative complement pathway (ACH50) activity, phagocytosis percentage (PP) and respiratory burst activity of head kidney macrophages of cobia. Moreover, feeding of supplemented diets containing 3.0 g kg?1 IC resulted in significantly lower mortality against the pathogens, V. harveyi compared with the control group. To elevate the growth and immune resistance ability of cobia, the optimal dose of dietary IC administration, determined by second‐order polynomial regression analysis was 3.43 and 2.71 g kg?1 diet, respectively, on the basis of the SGR and mortality after challenge with V. harveyi.  相似文献   

17.
An 8‐week feeding trial was conducted to determine the optimal dietary arginine requirement for juvenile swimming crab Portunus trituberculatus. Six isonitrogenous and isolipidic experimental diets were formulated to contain graded arginine levels which ranged from 15.9 to 33.0 g kg?1. Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (4.72 ± 0.12 g). The results indicated that dietary arginine had significant effects on weight gain (WG), specific growth rate (SGR), protein productive value, feed efficiency and protein efficiency ratio. Weight gain and SGR significantly increased with the dietary arginine increasing from 15.9 to 27.4 g kg?1, while with the further increasing from 27.4 to 33.0 g kg?1, WG and SGR did not increase significantly. Maximum arginine, proline and total essential amino acid contents in muscle were observed in 27.4 g kg?1 group diet. The swimming crab fed the diet with lower dietary arginine level showed higher AST and lower ALT in the serum. Crab fed with the lower dietary arginine level had significantly lower ALT in the serum than the other groups. Haemolymph indexes were significantly affected by the dietary arginine level except for the cholesterol concentration, and the highest values were all found in 27.4 g kg?1 group diet. The two slope broken‐line model using SGR showed that the optimal dietary arginine requirement was 27.7 g kg?1 of the dry matter (56.0 g kg?1 dietary protein) for juvenile swimming crab.  相似文献   

18.
A 12‐week growth trial was conducted in a flow‐through system to determine dietary selenium (Se) requirement for on‐growing gibel carp (initial body weight: 76.2 ± 0.05 g, mean ± SEM). Selenomethionine was supplemented to the basal diet to formulate seven semi‐purified diets containing 0.26, 0.58, 0.72, 1.14, 1.34, 1.73 and 2.09 mg Se kg?1 diet. The results showed that plasma superoxide dismutase (SOD) activity significantly increased when fish were fed with 0.58 mg Se kg?1 diet (< 0.05) and then decreased at 2.09 mg Se kg?1 diet (< 0.05). Plasma T‐AOC activity was higher in fish fed with 0.72 mg Se kg?1 diet (< 0.05) and plasma malondialdehyde (MDA) was higher in fish fed with 0.26 mg Se kg?1 diet (< 0.05). When fish were fed 1.14 mg Se kg?1 diet, hepatic GSH‐Px, T‐AOC, GSH and CAT activities were significantly higher than those fed with 0.26 mg Se kg?1 diet (< 0.05). Hepatic superoxide dismutase (SOD) activity was higher at 1.34 mg Se kg?1 diet (< 0.05). Fish liver Se concentrations were significantly higher when fed with 0.72 mg Se kg?1 diet (< 0.05) and then kept constant when Se ≥ 0.72 mg kg?1 (> 0.05). Whole‐body and muscle Se concentrations were higher when fed with 1.34 mg Se kg?1 diet (< 0.05) and kept a plateau when Se ≥ 1.34 mg kg?1 (> 0.05). In conclusion, based on broken‐line regression of hepatic Se concentrations, hepatic SOD activity and hepatic T‐AOC activity, dietary Se requirements for on‐growing gibel carp was 0.73 mg kg?1, 1.12 mg kg?1 and 1.19 mg kg?1 diet respectively.  相似文献   

19.
A 75 days experiment was conducted in a flow‐through system on juvenile gibel carp (Carassius auratus gibelio) (3.43 ± 0.01 g) to evaluate the effects of dietary lysozyme on growth performance, intestine morphology, microbiota and immune response. Four isonitrogenous (crude protein: 367 g kg?1) isolipid (62 g kg?1) and isocaloric (gross energy: 17.92 kJ g?1) diets were formulated to contain 0, 100, 500 and 1000 mg kg?1 lysozyme, respectively. The results showed that specific growth rate (SGR) and feed efficiency (FE) increased at 1000 mg kg?1 lysozyme. Blood leucocyte phagocytic activity (PA) and serum lysozyme (LZM) decreased with dietary lysozyme on day 25, 50 and 75. There were no significant differences in alternative complement pathway (ACP), respiratory burst (ROS), serum superoxide dismutase (SOD), glutathione peroxidase (GSHpx) or malonaldehyde (MDA). After Aeromonas hydrophilia challenge, higher survival was obtained at 500 mg kg?1 group. PA, ROS, SOD, LZM and ACP increased with increasing dietary lysozyme, while MDA reversed. Goblet cells in mid‐intestine and microvilli height in distal intestine increased with dietary lysozyme on day 75. Dietary lysozyme reduced the diversity of intestine microbiota. In conclusion, oral administration of 500 mg kg?1 dietary lysozyme for 75 days is recommended for the survival of gibel carp and 1000 mg kg?1 dietary lysozyme for fast growth.  相似文献   

20.
A study was conducted to investigate effects and interactions of magnesium (Mg) and vitamin E (VE) on growth performance, body composition, hepatic antioxidant capacity and serum biochemistry parameters of juvenile Japanese seabass Lateolabrax japonicus under oxidative stress condition. Fish (initial average body weight of 6.10 ± 0.20 g) were fed 9 oxidized oil diets supplemented with 3 grade levels of Mg (0, 520 and 1570 mg kg?1 diet) and VE (0, 60 and 200 mg kg?1 diet) for 8 weeks in freshwater. The results showed that diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE had highest growth and muscle lipid content. There were highest total superoxide dismutase, catalase, glutathione peroxidase activities and lowest malondialdehyde content in liver of fish fed diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE. Contrary to Mg concentrations, Ca concentrations and Ca/Mg ratio in whole body were inversely related to dietary Mg levels. However, combined deficiency or excess of dietary Mg and VE led to the decrease of hepatic antioxidant capacity, body lipid deposition and growth of Japanese seabass under oxidative stress condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号