首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We prove that in anyN-node communication network with maximum degreed, any deterministic oblivious algorithm for routing an arbitrary permutation requires (N/d) parallel communication steps in the worst case. This is an improvement upon the (N/d 3/2) bound obtained by Borodin and Hopcroft. For theN-node hypercube, in particular, we show a matching upper bound by exhibiting a deterministic oblivious algorithm that routes any permutation in (N/logN) steps. The best previously known upper bound was (N). Our algorithm may be practical for smallN (up to about 214 nodes).C. Kaklamanis was supported in part by NSF Grant NSF-CCR-87-04513. T. Tsantilas was supported in part by NSF Grants NSF-DCR-86-00379 and NSF-CCR-89-02500.  相似文献   

2.
In this paper, we consider the linear interval tolerance problem, which consists of finding the largest interval vector included in ([A], [b]) = {x R n | A [A], b [b], Ax = b}. We describe two different polyhedrons that represent subsets of all possible interval vectors in ([A], [b]), and we provide a new definition of the optimality of an interval vector included in ([A], [b]). Finally, we show how the Simplex algorithm can be applied to find an optimal interval vector in ([A], [b]).  相似文献   

3.
We show that we cannot effectively determine whether, for morphisms i , i ,card (u 0 –1 1) =card(u 0 –1 1) for all wordsu over the domain alphabets of the two given compositions. In contrast it is decidable for morphisms i , i and a regular setR whethercard(u 0 1 –1 ) =card(u 0 1 –1 ) for all wordsu inR. In order to prove the latter result we give a characterization of the multiplicity functions of simple finite automata by using cardinalities of compositions of the above form. Finally, we show that the above decidability result also holds when we consider rational functions rather than morphisms.  相似文献   

4.
Mutual convertibility of bound entangled states under local quantum operations and classical communication (LOCC) is studied. We focus on states associated with unextendible product bases (UPB) in a system of three qubits. A complete classification of such UPBs is suggested. We prove that for any pair of UPBs S and T the associated bound entangled states S and T cannot be converted to each other by LOCC, unless S and T coincide up to local unitaries. More specifically, there exists a finite precision (S,T) > 0 such that for any LOCC protocol mapping S into a probabilistic ensemble (p, ), the fidelity between T and any possible final state satisfies F(T, ) = 1 - (S,T).PACS: 03.65.Bz; 03.67.-a; 89.70+c.  相似文献   

5.
We study the approximation of the smallest eigenvalue of a Sturm–Liouville problem in the classical and quantum settings. We consider a univariate Sturm–Liouville eigenvalue problem with a nonnegative function q from the class C2 ([0,1]) and study the minimal number n() of function evaluations or queries that are necessary to compute an -approximation of the smallest eigenvalue. We prove that n()=(–1/2) in the (deterministic) worst case setting, and n()=(–2/5) in the randomized setting. The quantum setting offers a polynomial speedup with bit queries and an exponential speedup with power queries. Bit queries are similar to the oracle calls used in Grovers algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix exp((1/2) iM), where M is an n× n matrix obtained from the standard discretization of the Sturm–Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in n is an open issue. In particular, we show how to compute an -approximation with probability (3/4) using n()=(–1/3) bit queries. For power queries, we use the phase estimation algorithm as a basic tool and present the algorithm that solves the problem using n()=(log –1) power queries, log 2–1 quantum operations, and (3/2) log –1 quantum bits. We also prove that the minimal number of qubits needed for this problem (regardless of the kind of queries used) is at least roughly (1/2) log –1. The lower bound on the number of quantum queries is proven in Bessen (in preparation). We derive a formula that relates the Sturm–Liouville eigenvalue problem to a weighted integration problem. Many computational problems may be recast as this weighted integration problem, which allows us to solve them with a polylog number of power queries. Examples include Grovers search, the approximation of the Boolean mean, NP-complete problems, and many multivariate integration problems. In this paper we only provide the relationship formula. The implications are covered in a forthcoming paper (in preparation).PACS: 03.67.Lx, 02.60.-x.  相似文献   

6.
Pushing Convertible Constraints in Frequent Itemset Mining   总被引:1,自引:0,他引:1  
Recent work has highlighted the importance of the constraint-based mining paradigm in the context of frequent itemsets, associations, correlations, sequential patterns, and many other interesting patterns in large databases. Constraint pushing techniques have been developed for mining frequent patterns and associations with antimonotonic, monotonic, and succinct constraints. In this paper, we study constraints which cannot be handled with existing theory and techniques in frequent pattern mining. For example, avg(S)v, median(S)v, sum(S)v (S can contain items of arbitrary values, {<, <, , } and v is a real number.) are customarily regarded as tough constraints in that they cannot be pushed inside an algorithm such as Apriori. We develop a notion of convertible constraints and systematically analyze, classify, and characterize this class. We also develop techniques which enable them to be readily pushed deep inside the recently developed FP-growth algorithm for frequent itemset mining. Results from our detailed experiments show the effectiveness of the techniques developed.  相似文献   

7.
A nonlinear stochastic integral equation of the Hammerstein type in the formx(t; ) = h(t, x(t; )) + s k(t, s; )f(s, x(s; ); )d(s) is studied wheret S, a measure space with certain properties, , the supporting set of a probability measure space (,A, P), and the integral is a Bochner integral. A random solution of the equation is defined to be an almost surely continuousm-dimensional vector-valued stochastic process onS which is bounded with probability one for eacht S and which satisfies the equation almost surely. Several theorems are proved which give conditions such that a unique random solution exists. AMS (MOS) subject classifications (1970): Primary; 60H20, 45G99. Secondary: 60G99.  相似文献   

8.
Dynamical Properties of Timed Automata   总被引:1,自引:0,他引:1  
Timed automata are an important model for specifying and analyzing real-time systems. The main analysis performed on timed automata is the reachability analysis. In this paper we show that the standard approach for performing reachability analysis is not correct when the clocks drift even by a very small amount. Our formulation of the reachability problem for timed automata is as follows: we define the set R *(T,Z 0)=>0 Reach(T, Z 0 where T is obtained from timed automaton T by allowing an drift in the clocks. R *(T,Z 0) is the set of states which can be reached in the timed automatonT from the initial states in Z0 when the clocks drift by an infinitesimally small amount. We present an algorithm for computing R *(T,Z 0)and provide a proof of its correctness. We show that R *(T,Z 0)is robust with respect to various types of modeling errors. To prove the correctness of our algorithm, we need to understand the dynamics of timed automata—in particular, the structure of the limit cycles of timed automata.  相似文献   

9.
Dr. T. Ström 《Computing》1972,10(1-2):1-7
It is a commonly occurring problem to find good norms · or logarithmic norms (·) for a given matrix in the sense that they should be close to respectively the spectral radius (A) and the spectral abscissa (A). Examples may be the certification thatA is convergent, i.e. (A)A<1 or stable, i.e. (A)(A)<0. Often the ordinary norms do not suffice and one would like to try simple modifications of them such as using an ordinary norm for a diagonally transformed matrix. This paper treats this problem for some of the ordinary norms.
Minimisierung von Normen und Logarithmischen Normen durch Diagonale Transformationen
Zusammenfassung Ein oft vorkommendes praktisches Problem ist die Konstruktion von guten Normen · und logarithmischen Normen (·) für eine gegebene MatrixA. Mit gut wird dann verstanden, daß A den Spektralradius (A)=max |1| und (A) die Spektralabszisse (A)=max Re i gut approximieren. Beispiele findet man für konvergente Matrizen wo (A)A<1 gewünscht ist, und für stabile Matrizen wo (A)(A)<0 zu zeigen ist. Wir untersuchen hier, wie weit man mit Diagonaltransformationen und dengewöhnlichsten Normen kommen kann.
  相似文献   

10.
I discuss the attitude of Jewish law sources from the 2nd–:5th centuries to the imprecision of measurement. I review a problem that the Talmud refers to, somewhat obscurely, as impossible reduction. This problem arises when a legal rule specifies an object by referring to a maximized (or minimized) measurement function, e.g., when a rule applies to the largest part of a divided whole, or to the first incidence that occurs, etc. A problem that is often mentioned is whether there might be hypothetical situations involving more than one maximal (or minimal) value of the relevant measurement and, given such situations, what is the pertinent legal rule. Presumption of simultaneous occurrences or equally measured values are also a source of embarrassment to modern legal systems, in situations exemplified in the paper, where law determines a preference based on measured values. I contend that the Talmudic sources discussing the problem of impossible reduction were guided by primitive insights compatible with fuzzy logic presentation of the inevitable uncertainty involved in measurement. I maintain that fuzzy models of data are compatible with a positivistic epistemology, which refuses to assume any precision in the extra-conscious world that may not be captured by observation and measurement. I therefore propose this view as the preferred interpretation of the Talmudic notion of impossible reduction. Attributing a fuzzy world view to the Talmudic authorities is meant not only to increase our understanding of the Talmud but, in so doing, also to demonstrate that fuzzy notions are entrenched in our practical reasoning. If Talmudic sages did indeed conceive the results of measurements in terms of fuzzy numbers, then equality between the results of measurements had to be more complicated than crisp equations. The problem of impossible reduction could lie in fuzzy sets with an empty core or whose membership functions were only partly congruent. Reduction is impossible may thus be reconstructed as there is no core to the intersection of two measures. I describe Dirichlet maps for fuzzy measurements of distance as a rough partition of the universe, where for any region A there may be a non-empty set of - _A (upper approximation minus lower approximation), where the problem of impossible reduction applies. This model may easily be combined with probabilistic extention. The possibility of adopting practical decision standards based on -cuts (and therefore applying interval analysis to fuzzy equations) is discussed in this context. I propose to characterize the uncertainty that was presumably capped by the old sages as U-uncertainty, defined, for a non-empty fuzzy set A on the set of real numbers, whose -cuts are intervals of real numbers, as U(A) = 1/h(A) 0 h(A) log [1+(A)]d, where h(A) is the largest membership value obtained by any element of A and (A) is the measure of the -cut of A defined by the Lebesge integral of its characteristic function.  相似文献   

11.
Summary Let L(f) be the network complexity of a Boolean function L(f). For any n-ary Boolean function L(f) let . Hereby p ranges over all relative Turing programs and ranges over all oracles such that given the oracle , the restriction of p to inputs of length n is a program for L(f). p is the number of instructions of p. T p (n) is the time bound and S p of the program p relative to the oracle on inputs of length n. Our main results are (1) L(f) O(TC(L(f))), (2) TC(f) O(L(f) 2 2+) for every O.The results of this paper have been reported in a main lecture at the 1975 annual meeting of GAMM, April 2–5, Göttingen  相似文献   

12.
Algorithms for determining computationally rigorous componentwise bounds on the solutions x R n of equations F(x, t) = 0 R m containing parameters t R l due to small perturbations in t when m n and when F is at most twice continuously differentiable in x and in t are described. Numerical results which illustrate the behaviour of the algorithms are presented.  相似文献   

13.
A Maple procedure is described by means of which an algebraic function given by an equation f(x y) = 0 can be expanded into a fractional power series (Puiseux series)
where
,
of special (nice) type. It may be a series with polynomial, rational, hypergeometric coefficients, or m-sparse or m-sparse m-hypergeometric series. First, a linear ordinary differential equation with polynomial coefficients Ly(x) = 0 is constructed which is satisfied by the given algebraic function. The , n 0, and a required number of initial coefficients 0, ..., are computed by using Maple algcurves package. By means of Maple Slode package, a solution to the equation Ly(x) = 0 is constructed in the form of a series with nice coefficients, the initial coefficients of which correspond to the calculated 0, ..., . The procedure suggested can construct an expansion at a user-given point x 0, as well as determine points where an expansion of such a special type is possible.  相似文献   

14.
Summary For a family of languages , CAL() is defined as the family of images of under nondeterministic two-way finite state transducers, while FINITE · VISIT() is the closure of under deterministic two-way finite state transducers; CAL0()= and for n0, CAL n+1()=CAL n (CAL()). For any semiAFL , if FINITE · VISIT() CAL(), then CAL n () forms a proper hierarchy and for every n0, FINITE · VISIT(CALn()) CAL n+1() FINITE · VISIT(CAL n+1()). If is a SLIP semiAFL or a weakly k-iterative full semiAFL or a semiAFL contained in any full bounded AFL, then FINITE · VISIT() CAL() and in the last two cases, FINITE · VISIT(). If is a substitution closed full principal semiAFL and FINITE · VISIT(), then FINITE · VISIT() CAL(). If is a substitution closed full principal semiAFL generated by a language without an infinite regular set and 1 is a full semiAFL, then is contained in CALm(1) if and only if it is contained in 1. Among the applications of these results are the following. For the following families , CAL n () forms a proper hierarchy: =INDEXED, =ETOL, and any semiAFL contained in CF. The family CF is incomparable with CAL m (NESA) where NESA is the family of one-way nonerasing stack languages and INDEXED is incomparable with CAL m (STACK) where STACK is the family of one-way stack languages.This work was supported in part by the National Science Foundation under Grants No. DCR74-15091 and MCS-78-04725  相似文献   

15.
Suppose a directed graph has its arcs stored in secondary memory, and we wish to compute its transitive closure, also storing the result in secondary memory. We assume that an amount of main memory capable of holdings values is available, and thats lies betweenn, the number of nodes of the graph, ande, the number of arcs. The cost measure we use for algorithms is theI/O complexity of Kung and Hong, where we count 1 every time a value is moved into main memory from secondary memory, or vice versa.In the dense case, wheree is close ton 2, we show that I/O equal toO(n 3/s) is sufficient to compute the transitive closure of ann-node graph, using main memory of sizes. Moreover, it is necessary for any algorithm that is standard, in a sense to be defined precisely in the paper. Roughly, standard means that paths are constructed only by concatenating arcs and previously discovered paths. For the sparse case, we show that I/O equal toO(n 2e/s) is sufficient, although the algorithm we propose meets our definition of standard only if the underlying graph is acyclic. We also show that(n 2e/s) is necessary for any standard algorithm in the sparse case. That settles the I/O complexity of the sparse/acyclic case, for standard algorithms. It is unknown whether this complexity can be achieved in the sparse, cyclic case, by a standard algorithm, and it is unknown whether the bound can be beaten by nonstandard algorithms.We then consider a special kind of standard algorithm, in which paths are constructed only by concatenating arcs and old paths, never by concatenating two old paths. This restriction seems essential if we are to take advantage of sparseness. Unfortunately, we show that almost another factor ofn I/O is necessary. That is, there is an algorithm in this class using I/OO(n 3e/s) for arbitrary sparse graphs, including cyclic ones. Moreover, every algorithm in the restricted class must use(n 3e/s/log3 n) I/O, on some cyclic graphs.The work of this author was partially supported by NSF grant IRI-87-22886, IBM contract 476816, Air Force grant AFOSR-88-0266 and a Guggenheim fellowship.  相似文献   

16.
For the three-index axial transportation polyhedron defined by the integer vector, existence of noninteger vertices was proved. In particular, the three-index n × m × k axial transportation polyhedron having vertices with r fractional components was shown to exist for and only for any number r {4,6,7,...,(n, m, k)}, where (n, m, k) = min{n, m + k - 2} + m + k - 2, n m k 3.  相似文献   

17.
Thek-Delaunay tree extends the Delaunay tree introduced in [1], and [2]. It is a hierarchical data structure that allows the semidynamic construction of the higher-order Voronoi diagrams of a finite set ofn points in any dimension. In this paper we prove that a randomized construction of thek-Delaunay tree, and thus of all the orderk Voronoi diagrams, can be done inO(n logn+k 3n) expected time and O(k2n) expected storage in the plane, which is asymptotically optimal for fixedk. Our algorithm extends tod-dimensional space with expected time complexityO(k (d+1)/2+1 n (d+1)/2) and space complexityO(k (d+1)/2 n (d+1)/2). The algorithm is simple and experimental results are given.This work has been supported in part by the ESPRIT Basic Research Action No. 3075 (ALCOM).  相似文献   

18.
Optimal shape design problems for an elastic body made from physically nonlinear material are presented. Sensitivity analysis is done by differentiating the discrete equations of equilibrium. Numerical examples are included.Notation U ad set of admissible continuous design parameters - U h ad set of admissible discrete design parameters - function fromU h ad defining shape of body - h function fromU h ad defining approximated shape of body - vector of nodal values of h - { n} sequence of functions tending to - () domain defined by - K bulk modulus - shear modulus - penalty parameter for contact condition - V() space of virtual displacements in() - V h(h) finite element approximation ofV() - J cost functional - J h discretized cost functional - J algebraic form ofJ h - (u) stress tensor - e(u) strain tensor - K stiffness matrix - f force vector - b(q) term arising from nonlinear boundary conditions - q vector of nodal degrees of freedom - p vector of adjoint state variables - J Jacobian of isoparametric mapping - |J| determinant ofJ - N vector of shape function values on parent element - L matrix of shape function derivatives on parent element - G matrix of Cartesian derivatives of shape functions - X matrix of nodal coordinates of element - D matrix of elastic coefficients - B strain-displacement matrix - P part of boundary where tractions are prescribed - u part of boundary where displacements are prescribed - variable part of boundary - strain invariant  相似文献   

19.
Recently, Yamashita and Fukushima [11] established an interesting quadratic convergence result for the Levenberg-Marquardt method without the nonsingularity assumption. This paper extends the result of Yamashita and Fukushima by using k=||F(xk)||, where [1,2], instead of k=||F(xk)||2 as the Levenberg-Marquardt parameter. If ||F(x)|| provides a local error bound for the system of nonlinear equations F(x)=0, it is shown that the sequence {xk} generated by the new method converges to a solution quadratically, which is stronger than dist(xk,X*)0 given by Yamashita and Fukushima. Numerical results show that the method performs well for singular problems.  相似文献   

20.
Schedulers for larger classes of pinwheel instances   总被引:1,自引:0,他引:1  
The pinwheel is a hard-real-time scheduling problem for scheduling satellite ground stations to service a number of satellites without data loss. Given a multiset of positive integers (instance)A={a1,..., an}, the problem is to find an infinite sequence (schedule) of symbols from {1,2,...,n} such that there is at least one symboli within any interval of ai symbols (slots). Not all instancesA can be scheduled; for example, no successful schedule exists for instances whose density,(A)= i i (l/ai), is larger than 1. It has been shown that all instances whose densities are less than a 0.5 density threshold can always be scheduled. If a schedule exists, another concern is the design of a fast on-line scheduler (FOLS) which can generate each symbol of the schedule in constant time. Based on the idea of integer reduction, two new FOLSs which can schedule different classes of pinwheel instances, are proposed in this paper. One uses single-integer reduction and the other uses double-integer reduction. They both improve the previous 0.5 result and have density thresholds of 13/20 and2/3, respectively. In particular, if the elements inA are large, the density thresholds will asymptotically approach In 2 and 1/R2, respectively.This research was supported in part by ONR Grant N00014-87-K-0833, and was done while Francis Chin was visiting the Computer Science Program, The University of Texas at Dallas, Richardson, TX 75083, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号