首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 531 毫秒
1.
BaO对连铸保护渣熔化行为和结晶矿相的影响   总被引:3,自引:1,他引:2  
实验研究和分析了BaO(2%~8%)对连铸结晶器保护渣(%:3~5MgO、1~2Al2O3、8Na2O、3~4B2O3、2Li2O、3~4C)熔化和结晶温度的影响以及无氟渣的结晶矿相。结果表明,随BaO含量由2%增加至8%,保护渣的熔化温度由1053℃降至1011℃,结晶温度降低较少,从954℃降至948℃;无氟渣的结晶矿相为黄长石,是铝黄长石(Ca2Al2SiO7)、镁黄长石(Ca2MgSi2O7)和钠黄长石(NaCaAlSi2O7)的固溶体,可通过调整渣膜中黄长石的析晶率,控制结晶器与坯壳间的传热。  相似文献   

2.
针对薄板坯连铸无取向电工钢钢种及相应的结晶器保护渣特点,分析了保护渣理化性能与无取向电工钢增碳及浇注过程中结晶器热流的关系.研究发现,通过降低渣中配碳量(w(C)<2%),并控制液渣层厚度保持在5~10 mm等方法,可有效防止保护渣引起的增碳;通过调整保护渣理化性能即降低保护渣的碱度和熔化温度的方法,可以提高无取向电工钢浇注过程中的结晶器热流,获得能够实现浇注过程中热流稳定、不引起增碳、板卷质量良好的无取向电工钢结晶器保护渣理化性能指标.  相似文献   

3.
《特殊钢》2017,(1)
采用几何相似比1:2水模型研究了230 mm×1 250 mm板坯结晶器原浸入式水口(下孔直径78 mm,侧孔长轴80 mm,短轴66 mm)和缩小孔面积的优化水口(下孔直径65 mm,侧孔长轴75 mm,短轴60 mm)结晶器液面波动、冲击深度,流场分布和保护渣覆盖情况。结果表明,同种工况下,优化水口下液面波动更活跃,液渣层相对均匀,即减小水口侧孔面积,能提高流股出口速度,有利于保护渣熔化;钢厂生产DP600钢230 mm×1 250 mm铸坯测定结晶器内液渣层的厚度表明,当水口浸入深度130 mm,通钢量2.8 t/min时,使用原有水口时液面不太活跃,液渣层厚度差为12~13 mm,使用优化水口时,液面较活跃,液渣层厚度差为3~5 mm。  相似文献   

4.
薄板坯连铸用特殊保护渣的研制   总被引:1,自引:0,他引:1  
本文介绍我国第一台薄板坯连铸试验机结晶器用保护渣的研制和使用。保护渣成分为SiO2 28~35%,CaO 28~35%,Na2O5~10%,F7~10%(某些渣中加入B2O3);半球温度<1150℃;1400℃粘度<0.1Pa·s;熔渣层厚度10~20mm。研制的保护渣满足了浇铸普碳钢,低合金钢薄板坯的热试要求,铸坯表面质量良好。还讨论了渣膜厚度,保护渣消耗量及碳素种类对结晶器中保护渣热行为的影响。  相似文献   

5.
任磊  张立峰  王强强  赵星 《钢铁》2016,51(8):35-40
 在连铸过程中,结晶器易结渣圈是造成铸坯产生缺陷的主要原因之一。对304不锈钢板坯连铸过程中结晶器保护渣原渣、距开浇60 min时的液渣和渣圈的化学组成、理化性能、结晶矿相以及渣圈形貌结构进行对比分析。结果表明,连铸过程中TiO2和Cr2O3从钢液进入液渣生成高熔点氧化物,使液渣和渣圈的完全熔化温度和黏度显著增大,碱度、转折温度降低。液渣与渣圈的物相以枪晶石和钙铝黄长石为主。高熔点相钙铝黄长石的大量析出以及TiO2和Cr2O3进入液渣使液渣黏度增大是渣圈形成并长大的重要原因。  相似文献   

6.
对5种薄板坯连铸保护渣化学成分、熔化温度、熔化速度、结晶温度和矿物组成进行了试验研究和理论分析,结果表明现行薄板坯连铸保护渣熔化温度为1057~1131℃,熔化速度为19.3~61.1s,结晶温度为1058~1142℃,凝固渣样的矿物组成以硅灰石和少量黄长石为主,且随着碱度的提高,渣样的玻璃化率急剧降低。综合各种性能和工艺要求,渣A除熔化速度需要调整外,其它性能均较适于薄板坯连铸需要。  相似文献   

7.
张勇 《冶金丛刊》2013,(2):1-3,7
为了减少大板坯连铸机粘结及粘结漏钢的发生,对结晶器保护渣的消耗量、保护渣液渣层厚度及粘结的受力机理进行了研究和分析,认为保护渣消耗量低及保护渣液渣层厚度不够时容易产生粘结和粘结漏钢。通过采集现场的参数进行理论计算并与实际生产值进行对比,结果表明,保护渣的消耗量控制在0.4~0.6 kg/m2、保护渣液渣层厚度控制在10mm以上后,未发生粘结漏钢事故,且粘结发生次数降低了60%。  相似文献   

8.
连铸结晶器中形成的保护渣膜在润滑与传热方面起重要作用,但渣膜的厚度和结构还没有完全被人们所了解。本次研究中,保护渣膜试样是取自浇铸结束后连铸结晶器内,保留浇铸期间所处位置的渣膜。通过此次试验,清楚了结晶器内弯月面处保护渣膜的厚度。根据显微镜下对渣膜截面的观察,研究了渣膜的结构,即渣膜的结晶情况。此外,基于上述观察结果,研究了结晶器内通过渣膜的传热现象,得出以下结论: (1)确认结晶器内保护渣膜的厚度约为1mm。玻璃层为连铸中钢水顶部的熔融保护渣,浇铸结束后成为薄膜,将其假定为浇铸期间的保护渣膜。 (2)按结晶器保护渣消耗量可估算出浇铸期间渣膜中的液渣层厚度。 (3)弯月面处渣膜约1mm厚时,辐射及传导的总热阻与渣膜和结晶器之间的界面热阻相等。 (4)文中提到的界面热阻可能大于实际浇铸中结晶器的热阻。原因可能是由于这些热阻是在无钢水压力情况下测得的,实际结晶器内的界面热阻似乎较小。  相似文献   

9.
 针对特厚板连铸工艺的特点,分析了传统的中厚板连铸保护渣与特厚板连铸保护渣的作用特征差异。根据不同钢种在结晶器内的凝固特性,对新钢特厚板连铸保护渣进行了系列规划,分为高碳钢连铸保护渣、包晶钢连铸保护渣、中碳低合金钢连铸保护渣3大类。在此基础上,提出了保护渣熔化温度、黏度、转折温度、结晶比例的控制范围。生产实践表明,设计的保护渣浇铸过程结晶器内状况良好,渣面无结团、结块现象,液渣层厚度合适,保护渣消耗量正常,铸坯表面质量优良,连铸生产工艺顺行。  相似文献   

10.
对高铝无磁钢20Mn23AIV(/%:0.14~0.20C、21.50~25.00Mn、1.50~2.50Al、0.04~0.10V)200 mm板坯连铸过程结晶器保护渣液渣和渣圈的化学组成、理化性能和结晶矿相进行了对比分析。保护渣原渣组成为(/%):31.91CaO、30.30SiO2、6.58Al2O3、1.12MgO、3.02MnO、7.73Na20、7.10F。结果表明,连铸开浇后15 min,液渣和渣圈中的SiO2含量分别降低至22%和18%, Al2O3含量分别提高至20.5%和25.5%,其碱度由原渣的1.05分别提高至1.7和2.0。此时液渣及渣圈的熔化温度和粘度大幅度增加,转折温度大幅度降低;渣圈的化学成分及理化性能的变化幅度均大于液渣。连铸开浇15 min后液渣及渣圈的成分与性能均趋于稳定。高熔点相钙铝黄长石的析出是促使渣圈形成的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号