首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植入瘤体内的氟尿嘧啶微球   总被引:4,自引:0,他引:4  
陆彬  熊素彬  王建 《药学学报》2002,37(12):971-975
目的为提高抗癌疗效,制备可植入瘤体内的氟尿嘧啶微球。方法以聚乳酸为载体材料,O/W型乳化挥发法制备氟尿嘧啶微球;考察了微球性质、体外释药及植入实体瘤Lewis肺癌的抑瘤效果。结果微球载药量为(10.30±0.20)%,包封率为(68.3±1.5)%;外观圆整光滑,为物理包载;突释很少,体外释药T1/2较原药延长约168倍,属扩散-溶蚀机制;抑瘤率可达60.6%,降低了毒副作用。结论O/W型乳化挥发法制备的氟尿嘧啶聚乳酸缓释微球,植入瘤体内杀灭肿瘤细胞将可能成为肿瘤化疗的有效方法。  相似文献   

2.
A multiple-unit system comprising mucoadhesive bilayer buccal tablets of carvedilol-loaded chitosan microspheres (CMs) was developed to improve bioavailability and therapeutic efficacy of carvedilol. Drug-loaded CMs were prepared by spray drying, evaluated for powder and particle characteristics, and optimized batch of CMs was compressed into bilayer buccal tablets using Carbopol. Tablets were evaluated for physicochemical parameters, in vitro drug release, in vivo pharmacokinetic and pharmacodynamic studies. Optimized formulation, CMT1 (CMT, chitosan microsphere tablet) showed maximum mucoadhesive force (50?±?1.84?dyne/cm2), exhibited 73.08?±?3.05% drug release and demonstrated zero-order kinetics with non-Fickian release mechanism. Pharmacokinetic studies in rabbits showed significantly higher Cmax (71.26?±?6.45?ng/mL), AUC0–10 (AUC, area under the curve 390.75?±?5.23?ng/mL/h) and AUC0–∞ (664.72?ng/mL/h) than carvedilol oral tablet. Pharmacodynamic studies confirmed reduction in mean arterial pressure, heart rate, body weight and triglyceride on administration of bilayer buccal tablet compared to oral carvedilol tablet. Multiple-unit system exhibited enhanced bioavailability and sustained release of carvedilol, indicating its improved therapeutic potential for the treatment of hypertension.  相似文献   

3.
The aim of this study was to prepare levofloxacin-loaded chitosan microspheres and to evaluate their in vitro and in vivo characteristics. Glutaraldehyde-crosslinked microspheres were prepared using a spray-drying method, and characterized in terms of the morphological examination, particle size distribution, entrapment efficiency, drug loading and in vitro release. Pharmacokinetics and colon biodistribution studies were used to evaluate that microspheres have more advantage than the conventional formulations. The surface morphology of the freeze-dried microspheres were smooth, discrete with a regular spherical to near-spherical shape. Size of the microspheres after freeze-drying was 4.96?±?0.76?μm and well-distributed. The zeta potential of microspheres was ?29.3?±?2.1?mV. An average drug loading of 9.3?±?0.4% and encapsulation efficiency of 81.1?±?4.7% of levofloxacin microspheres were obtained with the optimized preparation parameters. The cumulative release rate of levofloxacin microspheres was followed by a sustained release and fitted for classic Higuchi kinetic model. In vivo studies showed that chitosan microspheres are thought to have the potential to maintain levofloxacin concentration within target ranges for a long time, decreasing side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. It also does not cause any harmful or toxic effect in colon and rectum as evaluated by histopathologic studies.  相似文献   

4.
The aim of this study was to prepare cefquinome-loaded poly lactic-co-glycolic acid (PLGA) microspheres and to evaluate their in vitro and in vivo characteristics. Microspheres were prepared using a spry drier and were characterized in terms of morphology, size, drug-loading coefficient, encapsulation ratio and in vitro release. The prepared microspheres were spherical with smooth surfaces and uniform size (12.4?±?1.2?μm). The encapsulation efficiency and drug loading of cefquinome was 91.6?±?2.6 and 18.3?±?1.3%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36?h. In vivo studies identified the lung as the target tissue and the region of maximum cefquinome release. A partial lung inflammation was observed but disappeared spontaneously as the microspheres were removed through in vivo decay. The sustained cefquinome release from the microspheres revealed its applicability as a drug delivery system that minimized exposure to healthy tissues while increasing the accumulation of therapeutic drug at the target site. These results indicated that the spray-drying method of loading cefquinome into PLGA microspheres is a straightforward method for lung targeting in animals.  相似文献   

5.
To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19?±?1.17 to 59.15?±?0.67μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established.  相似文献   

6.
目的制备低分子肝素聚乳酸-羟基乙酸(LWMH-PLGA)缓释微球,观察微球表面形态,检测微球物理性能和体外释药行为。方法采用W1/O/W2复乳溶剂挥发法制作微球;通过扫描电镜观察微球的表面形态结构;利用天青A比色法测试微球中药物的载药量和包封率,并对微球中药物的体外释放行为进行研究。结果微球表面显现较多的孔隙,平均粒径为(2.55±0.94)μm,载药量为(14.79±1.03)%,包封率为(55.7±2.21)%;48 h的体外释放试验表明,LWMH累积释放率达到40%。结论 LWMH-PLGA微球能够稳定地释放药物LWMH,验证了PLGA微球作为LWMH控制释放载体的可行性。  相似文献   

7.
氢溴酸加兰他敏缓释片的人体药代动力学及缓释特性评价   总被引:4,自引:0,他引:4  
目的研究氢溴酸加兰他敏缓释片和普通片单剂量和多剂量给药后在健康受试者体内的药代动力学特征,并评价缓释片的缓释特性。方法建立以纳洛酮(naloxone)为内标的LC-MS测定方法,测定20名健康男性受试者按双交叉试验单剂量和多剂量服用氢溴酸加兰他敏缓释片与普通片后血浆中加兰他敏的浓度,并计算药代动力学参数和生物利用度,并评价缓释片的缓释特性。结果单剂量给药后,缓释片与普通片的HVD12Cmax分别为(15.4±1.7)h和(5.4±2.5)h;与普通片相比缓释片的延迟商R△为3.4±1.4;缓释片与普通片的Tmax分别为(4.4±1.5)h和(1.3±1.2)h;Cmax分别为(27.5±2.9)μg·L-1和(53.7±12.7)μg·L-1;缓释片的缓释特征明显。缓释片的相对生物利用度为(95.9±14.2)%。多剂量给药后,缓释片与普通片的CmSSax分别为(58.8±9.4)μg·L-1和(52.0±6.9)μg·L-1,CSmSin分别为(16.2±4.0)μg·L-1和(22.5±5.0)μg·L-1,Cav分别为(39.0±3.9)μg·L-1和(37.1±5.0)μg·L-1,DF分别为1.1±0.3和0.8±0.1;双单侧t检验结果表明两制剂的AUCss、CmSSax、Cav生物等效。结论缓释片与普通片吸收程度生物等效,该缓释片显示出明显的缓释特征。  相似文献   

8.
Abstract

Catalase in albumin microspheres were formulated for intravenous administration to antagonize the effects of over-production of reactive oxygenated species (ROS) such as hydrogen peroxide (H2O2) in septic shock. The aim was to increase effective half-life of catalase and take advantage of the phagocytic uptake of the encapsulated catalase by the vascular endothelium. Catalase microspheres were prepared by spray-drying. The microspheres were evaluated for particle size, particle shape and surface morphology by scanning electron microscopy (SEM), drug encapsulation efficiency, chemical stability, thermal stability and in vitro drug release characteristics. The microspheres had a mean particle size of 4.7 ± 2 µm, optimal for phagocytic uptake, as demonstrated by Makino et al. SEM revealed that microspheres were spherical with smooth surface morphology. An encapsulation efficiency of 91.5 ± 3% was achieved and the encapsulated catalase was chemically and thermally stable. Application of in vitro drug release data to the Higuchi kinetic equation indicated matrix diffusion-controlled catalase release from albumin microspheres.  相似文献   

9.
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres for the sustained release of low molecular weight heparin (LMWH) were prepared by a soild-in-oil-in-water (s/o/w) emulsion method. Prior to encapsulation, the LMWH micro-particles were fabricated by a modified freezing-induced phase separation method. The micro-particles were subsequently encapsulated into PLGA microspheres. Process optimization revealed that the NaCl concentration in the outer phase of s/o/w emulsion played a critical role in determining the properties of the microspheres. When the NaCl concentration increased from 0% to 5%, the encapsulation efficiency significantly increased from 51.5% to 76.8%. The initial burst release also decreased from 37.3% to 12.4%. In vitro release tests showed that LMWH released from PLGA microspheres in a sustained manner for about 14 days. Single injection of LMWH-loaded PLGA microspheres into rabbits resulted in an elevation of an anti-factor Xa activity for about 6 days. Furthermore, the integrity of the encapsulated LMWH was preserved during encapsulation process.  相似文献   

10.
An optimized process for protein encapsulation was applied to formulate epidermal growth factor (rhEGF)-poly-ε-caprolactone microspheres. Microparticles mean size was 3.8 µm ± 0.2 and the encapsulation efficiency was 41.9% ± 2.6. rhEGF recovery after the encapsulation process was ~70% (41.9% inside the microspheres and 30% still active in the external phase). In vitro release experiments in McIlvaine buffered solution showed a rhEGF sustained release over 4 days. Skin absorption studies conducted on full-thickness human skin using the Franz cell method showed that 20% rhEGF was released from the microspheres after 24 h exposure. Microspheres accumulated in the stratum corneum where they may act as a rhEGF reservoir. Therefore, rhEGF-PCL microparticles seemed to be promising systems due to their ability to provide locally a sustained release of rhEGF in skin layers.  相似文献   

11.
A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.  相似文献   

12.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15?000 microspheres possessed a smooth and round appearance with average particle size of 50?µm or so. The encapsulation percentages of microspheres prepared from PLGA 15?000, 20?000 and 30?000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30?000 microspheres to 3.97% of PLGA 15?000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30°C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

13.
The aim of this study was to demonstrate a sustained-release microparticulate dosage form for acyclovir via an in vitro study. Ethyl cellulose was selected as a model encapsulation material. All of the microspheres were prepared by an oil-in-water solvent evaporation technique. A 23 full factorial experiment was applied to study the effects of the viscosity of polymer, polymer/drug ratio, and polymer concentration on the drug encapsulation efficiency and the dissolution characteristics. The encapsulation efficiency of acyclovir in microspheres was in the range of 20.0-56.6%. Increase in the viscosity of ethyl cellulose and the ratio of CH2Cl2/ethyl cellulose increased drug encapsulation efficiency. The drug continuously released from microspheres for at least 12 h, and the release rate depended on the pH of the release medium. The sustained release characteristic was more prominent in the simulated intestine fluid than in the simulated gastric fluid. A faster release of drug was observed when a high viscosity polymer was used. The decomposition of acyclovir significantly decreased when encapsulated by ethyl cellulose, especially when stored at 37 and 50 °C.  相似文献   

14.
《Drug delivery》2013,20(3):178-186
Prednisolone acetate (PA)-loaded microspheres were prepared by the spray-drying technique using different polymer (1% and 2%) and drug concentrations (10% and 20%). To obtain the optimum formulation, a three-factor two-level (23) design was employed. The independent variables were polymer molecular weight, polymer concentration, and theoretical drug loading. Responses were the particle size, percentage of encapsulation efficiency, and the t50% release. The best formulation was prepared with 20% of PA and 1% of chitosan with medium molecular weight showing relative good yield of production (48.0?±?6.7%) and encapsulation efficiency (45.7?±?0.3%), and released the drug at a constant rate in 11 days.  相似文献   

15.
The aim of this study was to prepare cefquinome-loaded polylactic acid microspheres and to evaluate their in vitro and in vivo characteristics and pharmacodynamics for the therapy of pneumonia in a rat model. Microspheres were prepared using a 0.7?mm two-fluid nozzle spray drier in one step resulting in spherical and smooth microspheres of uniform size (9.8?±?3.6?μm). The encapsulation efficiency and drug loading of cefquinome were 91.6?±?2.6% and 18.7?±?1.2%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36?h. Cefquinome-loaded polylactic acid microspheres as a drug delivery system was successful for clearing experimental Klebsiella pneumonia lung infections. A decrease in inflammatory cells and an inhibition of inflammatory cytokines TNF-α, IL-1β and IL-8 after microspheres treatment was found. Changes in cytokine levels and types are secondary manifestations of drug bactericidal effects. Rats were considered to be microbiologically cured because the bacterial load was less than 100 CFU/g. These results also indicated that the spray-drying method of loading therapeutic drug into polylactic acid microspheres is a straightforward and safe method for lung-targeting therapy in animals.  相似文献   

16.
The present study aimed to develop an oral sustained release microparticulate system for acid labile enzyme-Serratiopeptidase. A 32 full factorial experiment was designed to study the effects of the external aqueous phase volume and stabilizer (Tween® 80) concentration on the entrapment and size of Eudragit S100 microspheres prepared by a modified double emulsion solvent evaporation technique. The results of analysis of variance tests for both effects indicated that the test is significant. The effect of external aqueous phase volume was found to be higher on the entrapment efficiency of microspheres (SSY1 = 1362.63; SSY2 = 250.13), whereas Tween® 80 produced a significant effect on size of microspheres (SSY1 = 944.01; SSY2 = 737.26). Scanning electron microscopy of microspheres demonstrated smooth surface spherical particles. The effect of formulation variables on the integrity of enzyme was confirmed by in vitro proteolytic activity. Microspheres having maximum drug encapsulation (81.32 ± 3.97) released 4–5% enzyme at pH 1.2 in 2 h. The release of enzyme from microspheres followed Higuchi kinetics (R2 = 0.987). In phosphate buffer, microspheres showed an initial burst release of 25.65 ± 2.35% in 1 h with an additional 62.96 ± 4.09% release in the next 5 h. Thus, formulation optimization represents an economical approach for successful preparation of Eudragit S100 microspheres involving fewest numbers of experiments.  相似文献   

17.
Lung-targeting sophoridine-loaded poly(lactide-co-glycolide) (PLGA) microspheres were constructed by a simple oil-in-oil emulsion-solvent evaporation method. The obtained microspheres were systematically studied on their morphology, size distribution, drug loading, encapsulation efficiency, in vitro release profile, and biodistribution in rats. The drug-loaded microparticles showed as tiny spheres under SEM and had an average size of 17?μm with 90% of the microspheres ranging from 12 to 24?μm. The drug loading and encapsulation efficiency were 65% and 6.5%, respectively. The in vitro drug release behavior of microspheres exhibited an initial burst of 16.6% at 4?h and a sustained-release period of 14 days. Drug concentration in lung tissue of rats was 220.10?μg/g for microspheres and 6.77?μg/g for solution after intraveneous injection for 30?min, respectively. And the microsphere formulation showed a significantly higher drug level in lung tissue than in other major organs and blood samples for 12 days. These results demonstrated that the obtained PLGA microspheres could potentially improve the treatment efficacy of sophoridine against lung cancer.  相似文献   

18.
介质对硝苯地平缓释制剂溶出行为的影响   总被引:7,自引:1,他引:6  
研究硝苯地平的两种国产普通片、一种进口缓释片和自制缓释微球在不同介质中的溶出行为。结果发现,介质对硝苯地平制剂的溶出速度有很大影响。以20%乙醇水溶液或0.5%十二烷基硫酸钠水溶液为介质,缓释片和缓释微球的溶出太快,且不能区别各制剂的溶出度差异。在0.1mol/L盐酸或pH6.8磷酸盐缓冲液中加入0.02%或0.1%吐温-80,分别作为介质,能较好评价制剂的溶出行为。在含0.02%吐温-80的0.1mol/L盐酸溶液中投入微球2、5和10mg对溶出度无显著影响。  相似文献   

19.
目的 探讨硫酸沙丁胺醇微球缓释片的制备方法,并对微球缓释片在家犬体内的药动学进行初步研究。方法 运用喷雾干燥法制备硫酸沙丁胺醇缓释微球,直接压片得到硫酸沙丁胺醇微球缓释片。对微球缓释片和市售普通片进行家犬体内单剂量给药实验,建立了血药浓度测定的高效液相色谱法。结果 普通片和微球缓释片的药动学参数Cmax分别为(155.1±3.4)和(126.7±1.9)ng·mL^-1;Tmax分别为(1.5±0.6)和(4.1±0.8)h;t1/2分别为(4.12±0.93)和(5.73±0.64)h,相对生物利用度为109.7%。结论 硫酸沙丁胺醇微球缓释片具有缓释效果。  相似文献   

20.
The aim of the present investigation was to develop and evaluate matrix tablet of mesalamine for colonic delivery by using Eudragit RSPO, RLPO and combination of both. The tablets were further coated with different concentration of pH-dependent methacrylic acid copolymers (Eudragit S100), by dip immerse method. The physicochemical parameters of all the formulations were found to be in compliance with the pharmacopoeial standards. The in vitro drug release study was conducted using sequential dissolution technique at pH 1.2 (0.1N) HCl, phosphate buffers pH 6.8 and 7.4, with or without rat cecal content mimicking different regions of gastro intestinal tract. The result demonstrated that the tablet containing Eudragit RLPO coated with Eudragit S100 (1 %) showed a release of 94.91 % for 24 h whereas in the presence of rat cecal content the drug release increases to about 98.55 % for 24 h. The uncoated tablets released the drug within 6 h. The in vitro release of selected formulation was compared with marketed formulation (Octasa MR). In vitro dissolution kinetics followed the Higuchi model via non-Fickian diffusion controlled release mechanism. The stability studies of tablets showed less degradation during accelerated and room temperature storage conditions. The enteric coated Eudragit S100 coated matrix of mesalamine showing promising site specific drug delivery in the colon region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号