首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
雷电流参数是输电线路雷电过电压分析和雷电防护分析的基础。总结了雷电流波形实测参数和雷电流模型,分别从波形和频谱两个方面对典型的雷电流模型进行了对比研究。利用PSCAD建立±800 k V特高压直流线路模型,采用不同的雷电流模型计算了线路的反击和绕击耐雷水平,结果表明:Heidler波和Concave波波头呈凹形,Concave波波头较Heidler波、双指数波和斜角波与实测雷电流波头最为接近。各雷电流模型的频谱都主要集中在0~100 k Hz以内,能量主要集中在0~50 k Hz以内,各雷电流模型频谱的区别主要在0~10 k Hz。雷电流波形对反击耐雷水平影响较大,对绕击耐雷水平影响较小。雷电流建模方法相同时,反击耐雷水平与雷电流波头斜率成反比。雷电流波形参数的实测结果分布范围较大,在输电线路防雷分析时,需要根据线路实际情况,测量和选取雷电流波形参数。  相似文献   

2.
假定雷电参数的统计变化服从自然对数正态分布,随机抽样雷电流幅值和波头时间、导线工频瞬时电压,用蒙特卡罗法计算线路雷击跳闸率。模拟结果显示考虑工频电压叠加对绕击闪络次数影响不大,对反击闪络次数有一定影响,但在220 kV线路防雷计算可以忽略,与广西电网某220 kV输电线路雷击跳闸率统计值对比吻合。规程法计算雷击跳闸率偏向于保守,基于正态分布雷电参数模型能合理解释小幅值大陡度雷电流引起的绝缘闪络,大幅值小陡度和小幅值大陡度雷电流引发雷击闪络的频率接近。  相似文献   

3.
直流架空输电线路的耐雷特性不同于交流系统,特高压直流输电线路杆塔高、跨度大,且工作电压幅值、极性不变,使得雷击直流高压输电线路的概率增大,有必要对直流架空输电线路耐雷性能进行研究。针对近年来葛南±500 kV直流输电线路多发的雷击故障,以葛南±500 kV直流单、双回架空输电线路为工程背景,采用ATP-EMTP和电气几何模型法分别对线路的反击和绕击耐雷性能进行了仿真计算研究,并与交流输电线路耐雷性能进行了分析比较。研究表明:±500 kV直流输电线路的雷电绕击跳闸率远高于反击跳闸率;工作电压对雷电先导发展、建弧率以及导线绕击距的影响比交流更大,使得直流输电线路正极性导线的雷击跳闸率高于负极性。  相似文献   

4.
输电线路本体雷击特征规律是差异化防雷性能评估的重要因素之一,对其进行科学合理的研究,可提高雷害治理方案的有效性。以四川电网500 k V东锦线2013年至2014年雷击暂态监测系统和雷电定位系统监测数据为基础,建立雷击数据统计方法,对雷击特征规律与杆塔高度、雷电空间分布相关性和绕、反击分布规律进行统计研究。结果表明,杆塔高度与雷击次数存在正相关性,相对高度越高的杆塔越易遭受雷击,杆塔沿途地形为平原区域的绕击率和反击率均高于山区。  相似文献   

5.
超高压电网多采用同塔双回或多回线路,由于杆塔较高,遭受雷击时可能造成多回线路闪络。依托某换流站500 kV交流侧系统,利用EMTP/ATP建立电站雷电侵入波过电压计算模型,研究换流站交流侧同塔双回线路遭受雷击时站内设备上过电压特性以及与单回线路的区别。结果表明:雷击同塔双回线路杆塔时,在两回线路均闪络的情况下,换流站设备上反击侵入波过电压在双线运行方式下幅值远高于单线运行方式,且过电压最大值一般是在雷击进线段第二基杆塔TW_2时出现,反击过电压特性与雷击单回线路差异较大;而同塔双回线路绕击侵入波过电压规律与单回线路类似,单线运行方式下设备过电压高于双线运行方式,且过电压最大值一般出现在雷电绕击距离换流站最近的TW_1附近线路。  相似文献   

6.
雷电定位系统可获取雷电流幅值、定位等信息,用于线路雷击故障定位,但至今缺乏实用的方法将雷击信息与线路雷击跳闸信息合理整合,实现雷击故障性质判定。为此,对不同杆塔接地电阻下线路反击耐雷水平及不同地线保护角和地面倾角下线路绕击临界雷电流分布区间进行量化,得到线路直击雷危险雷电流幅值分布区间,再以雷电定位系统监测所得雷击电流幅值与反击、绕击危险雷电流区间作比对的机制,建立线路雷击故障性质判别概率算法模型,形成一套完整的雷击故障性质判断方法,并基于此开发了线路雷击故障性质判断软件。经典型雷击跳闸线路的雷击性质判断验证,该方法能实现输电线路雷击故障性质的快速判定,判断结论准确可靠。  相似文献   

7.
随着电力系统电压等级的不断提高,雷电绕击成为高压及以上输电线路雷击跳闸故障的主要因素,且山区高压输电线路绕击更为严重。防雷电绕击侧针是对高压及以上电压等级输电线路绕击雷防护的改进措施。以某500 kV直流输电线路为例,分析并比较了一基G1型杆塔附近15~30 m范围内安装防绕击侧针前后,线路绕击率及绕击跳闸率的变化情况。基于电气几何模型计算了防绕击侧针对最大绕击雷电流幅值的影响。通过定量分析发现,防绕击侧针安装以后明显降低了高压线路绕击率及跳闸率,且在降低高压输电线路的绕击雷电流幅值同时,起到将绕击雷转变为高压系统可以承受的反击雷的目的。可见安装防绕击侧针作为已投运的高压及以上电压等级输电线路的防雷改造措施,具有较好的实用性。  相似文献   

8.
500kV线路避雷器的雷电过电压保护性能的研究   总被引:5,自引:4,他引:5  
研究了安装线路型避雷器后 ,5 0 0 k V线路在雷电反击和绕击情况下的雷击保护范围问题 ,并就绕击情况下线路型避雷器的雷电过电压保护性能进行了讨论分析 ,指出当绕击雷电流高达百千安级时 ,避雷器的放电电流亦会升至近百千安的水平 ,将对避雷器的固有能量吸收能力形成威胁。  相似文献   

9.
气体绝缘金属封闭输电线(GIL)因其具有容量大、传输损耗少等优点逐步得到推广,需要分析GIL雷电过电压威胁及其相应防护措施。利用EMTP软件搭建500 k V输电线路和GIL模型,计算线路发生反击和绕击情况下GIL雷电过电压,比较过电压暂态特性差异,分析过电压对绝缘威胁及安装额外金属氧化物避雷器对过电压的抑制效果,讨论GIL上避雷器安装位置对防护效果的影响。分析结果表明:线路发生反击时,GIL过电压波形振荡比绕击时剧烈,但过电压幅值要低于绕击情况。距离雷击点越远,GIL过电压幅值越高。GIL过电压随着雷击电流幅值的增加而增大,在GIL上安装额外避雷器基本能够实现有效雷电过电压防护,但防护效果受避雷器安装位置影响。  相似文献   

10.
应用线路避雷器提高交流输电线路耐雷水平的研究   总被引:3,自引:2,他引:3  
对应用线路避雷器提高交流输电线路的耐雷水平进行了分析研究,具体分析了雷电反击和绕击时线路避雷器的防雷效果及接地电阻、交流输电线路挡距等因素对耐雷水平的影响,最后对线路避雷器的雷击保护范围进行了分析探讨。  相似文献   

11.
雷击是造成输电线路跳闸的重要原因之一,雷击一般引起绝缘子串闪络导致线路跳闸,雷击引起档中导、地线空气间隙击穿导致线路跳闸较为罕见。针对一起500kV同塔双回输电线路雷击跳闸故障,通过建立绕击和反击电磁暂态模型,详细分析了绕击情况下和反击情况下该线路的过电压波过程,得出了雷击架空地线引起导、地线空气间隙击穿是本次故障的主要原因。最后,提出了防止同塔双回输电线路导、地线空气间隙击穿的措施。  相似文献   

12.
据统计,110kV输电线路的平均雷击跳闸率要高于220kV及以上电压等级的输电线路,本文从输电线路雷电反击过电压闪络和绕击过电压闪络的特征及影响因素分析山区输电线路雷击跳闸率偏高的原因,对防雷措施进行了比较分析,提出110kV输电线路的防雷措施应用的策略。  相似文献   

13.
气体绝缘金属输电线路(GIL)因其适合于远距离、大容量电力传输应用前景广泛,必须合理分析GIL雷击暂态特性以提高其防雷水平。介绍GIL技术相关优点,在ATPEMTP中建立500 kV架空线路、杆塔和GIL模型,分析雷电绕击和反击情况下GIL暂态过电压,比较GIL和XLPE过电压幅值差异,讨论避雷器对GIL侵入波过电压防护效果。仿真结果表明:绕击情况下GIL暂态过电压高于反击情况;GIL末端过电压高于其首端过电压,且随着GIL长度的增加,侵入波过电压幅值降低;在GIL首末两段安装避雷器能够有效提高其安全裕度;同等条件下,GIL雷电侵入波过电压高于XLPE电缆。GIL技术具体应用时需要详细分析其暂态特性。  相似文献   

14.
《Planning》2013,(21)
架空输电线路采取降低杆塔接地电阻值可再一定程度上减少雷电反击过电压的危害,提高线路的耐雷水平。但感应雷击、直击和绕击雷则通常与杆塔接地电阻值关系不大,欧美一些国家是大量采用木横担来遏制雷电反击跳闸。架空线路的耐雷水平基本上是随着杆塔接地电阻值的增加而线性减少。  相似文献   

15.
云南高海拔地区雷电活动分布规律的研究   总被引:2,自引:0,他引:2  
为获取云南省的雷电活动规律,结合雷电定位系统2005年—2008年的雷电监测数据,对整个云南省的落雷次数、雷暴日、落雷密度等雷电参数进行统计分析,并对雷电流幅值分布进行拟合。结果表明,采用IEEE推荐的表达式比雷电定位系统测量的雷电流幅值累积概率曲线和概率密度曲线拟合效果比采用我国现行规程中推荐公式要好,规程推荐的雷电流幅值累积概率在大于29 kA时比实际值大,而规程推荐的典型杆塔反击耐雷水平大于41 kA,这使得反击耐雷水平的设计趋于保守。根据电气几何模型的基本原理,对输电线路的绕击跳闸率进行计算,结果表明实际雷电流幅值概率密度计算得到的绕击跳闸率将比规程推荐公式计算值大,当最大绕击雷电流达到80kA时,所有电压等级的绕击跳闸率将是规程计算绕击跳闸率的4倍以上,这与目前高压输电线路雷击跳闸率比设计值偏高的事实基本相符。  相似文献   

16.
为提高特高压直流输电线路的防雷保护水平,借鉴了±500 k V直流线路避雷器的设计经验,并结合实际线路运行情况,设计计算了±800 k V直流线路避雷器关键技术参数。最后,通过仿真计算分析,从理论上考察了所设计的线路避雷器对特高压输电线路的防护效果及吸收能量情况。依据研究结果,提出了特高压直流线路避雷器额定电压为为960 k V,避雷器雷电冲击50%电压取值2 900 k V,标称放电电流为30 k A,外串间隙距离最大为2.0 m。仿真结果表明,所设计的避雷器能够显著提高杆塔反击和绕击耐雷水平,可靠保护该基杆塔,雷击极端情况下其通流容量为3.645 MJ,避雷器通过最大雷电流为72.3 k A。  相似文献   

17.
利用PSCAD/EMDTC电磁暂态仿真软件对一起750kV同塔双回输电线路跳闸的事故进行了仿真分析,结合现场的录波图确定了事故产生的原因为多重雷电绕击输电线路引起的继电保护动作闭锁了单相重合闸,后续雷击引发的单相对地闪络导致了线路跳闸。针对本次事故原因提出继电保护动作之前对雷电过电压的特征进行分析,以确定是否需要采取单相跳闸。  相似文献   

18.
220 kV及以上线路常用防雷措施是安装避雷器,需要分析线路遭受雷击后避雷器能量吸收情况以达到合理防护效果。利用EMTP软件搭建220 kV输电线路模型,考虑杆塔接地装置冲击特性,比较线路发生雷击反击和绕击时避雷器的残压与通流,讨论改变杆塔接地装置尺寸、线路档距、线路工作电压相位角等因素对避雷器吸收能量的影响。分析结果表明:线路发生反击时,避雷器残压与通流波形振荡不如绕击时剧烈,吸收的能量也远低于绕击;反击时,避雷器吸收的能量随着接地棒长度的增加而降低,而绕击时,吸收的能量随着接地棒长度的增加而增大。避雷器吸收的能量随着线路档距的增大而增加。反击时,避雷器吸收的能量随着工作电压相位角的增大呈现出先增大后减小的变化趋势,而绕击时,情况恰恰相反。  相似文献   

19.
特高压直流输电线路雷击故障跳闸所占总跳闸数的比列已越来越高,对供电的可靠性造成了一定威胁。因此,针对一起典型的800 k V直流线路雷击跳闸事件,通过雷达定位系统与故障巡查处理并进行了详细分析,得出雷电绕击是本次故障事件的主要根源。最后,提出并分析了特高压输电线路雷击的主要防范措施。  相似文献   

20.
雷击是输电线路非计划停运的主要原因,对于500 kV以上线路,绕击是雷击的主要类型。目前在绕击计算中,线路的雷电活动情况和地形地貌对绕击性能的影响没有得到很好的结合,为此,给出一种线路雷电参数与地形相结合的线路绕击跳闸率计算方法。首先以一档线路为基准,距线路中心及两端杆塔距离为d的范围为杆塔雷电参数统计区域,得到杆塔的落雷密度,以距线路走廊中心及两端杆塔距离为d的范围内为统计区域,得到雷电流幅值概率密度;再次以近似相等的距离将线路走廊离散化,得到垂直线路走廊方向的辅助点,根据离散点与辅助点之间的高差与距离,得到绕击计算的地面倾角;最后对电气几何模型进行改进,得到雷电参数与地形相结合的输电线路绕击计算方法。该方法更能反映输电线路的实际情况,可为差异化防雷服务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号