首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two main types of glassy fragmental rocks formed along the Proto-Macquarie Spreading Ridge: (i) hyaloclastite breccia; and (ii) pillow-fragment breccia. Examples now exposed on Macquarie Island, Southern Ocean, were largely sourced from proximal pillow lavas. In each of seven samples examined, hyaloclasts (basaltic glass grains) have a narrow major- and trace-element geochemical range, consistent with derivation of each sample from a single volcanic eruption event. Moreover, every sample analysed within the one stratigraphic section (at three sites) displays distinctive major- and trace-element geochemistry compared with the other two sections. This suggests that hyaloclasts at each site represent discrete magma batches. A single source for these glassy fragmental rocks contrasts with the dominant fault-scarp-derived polymict sedimentary rocks on Macquarie Island. We suggest that the hyaloclasts analysed in this study were deposited in small basins between the slopes of growing pillow cones along the mid-ocean ridge. The geochemical analyses presented here encompass (weakly) fractionated (e.g. Bauer Bay) to near-primitive (e.g. Pyramid Peak) compositions. All samples presented here lie within the range of the enriched- to normal-MORB suites previously reported for the island that include the least fractionated MORB melts known globally. The interpretation of geochemically distinct magma batches over the small area of the island suggests very limited magma mixing consistent with an immature or waning magmatic system. We relate these geochemical characteristics to: (i) volcanism near a very long offset transform; and (ii) genesis of magmas during the waning stages of slow seafloor spreading within a very narrow (<50 km-wide) spreading corridor.  相似文献   

2.
Major, trace element and Sr isotopic compositions have been determined on 21 lava samples from Vico volcano, Roman Province, Central Italy. The rocks investigated range from leucite tephritic phonolites to leucite phonolites and trachytes. Trace element compositions are characterized by high enrichments of incompatible elements which display strong variations in rocks with a similar degree of evolution. Well-defined linear trends are observed between pairs of incompatible trace elements such as Th-Ta, Th-La, Th-Hf. A decrease of Large Ion Lithophile (LIL) elements abundance contemporaneously with the formation of a large central caldera is one of the most prominent characteristics of trace element distribution. Sr isotope ratios range from 0.71147 to 0.71037 in the pre-caldera lavas and decreases to values of 0.70974–0.70910 in the lavas erupted after the caldera collapse. Theoretical modelling of geochemical and Sr isotopic variations indicates that, while fractional crystallization was an important evolutionary process, AFC and mixing also played key roles during the evolution of Vico volcano. AFC appears to have dominated during the early stages of the volcanic history when evolved trachytes with the highest Sr isotope ratios were erupted. Mixing processes are particularly evident in volcanites emplaced during the late stages of Vico evolution. According to the model proposed, the evolution of potassic magmas emplaced in a shallow-level reservoir was dominated by crystal fractionation plus wall rock assimilation and mixing with ascending fresh mafic magma. This process generated a range of geochemical and isotopic compositions in the mafic magmas which evolved by both AFC and simple crystal liquid fractionation, producing evolved trachytes and phonolites with variable trace element and Sr isotopic compositions.  相似文献   

3.
The Kale (Gumushane) volcanic rocks crop out in the southern zone of the eastern Pontide arc, and consist mainly of agglomerate, andesite, minor basalt, and tuff associated with sediments (limestone, marl, siltstone, sandstone) deposited in a shallow basin environment. The volcanites show mainly porphyritic, hyalo-porphyritic, and rare fluidal and glomeroporphyritic textures. These volcanic rocks consist predominantly of plagioclase, augite, hornblende, and lesser biotite, magnetite, and quartz, and secondary products of chloritization, carbonation, sericitization, and epidotization. In general, they show disequilibrium textures, possibly reflecting magma-mixing processes.

The volcanic rocks are mainly calc-alkaline in composition, and show moderate potassium enrichment. Most of the major- and trace-element variations reflect the significant role of fractional crystallization during the evolution of the volcanic suite. The fractionating phases are dominantly hornblende and augite, minor plagioclase, and magnetite. The rocks have high LILE and LREE enrichments, but are relatively depleted in HFSE relative to MORB. Moreover, incompatible trace-element distributions show similarities to those of an E-type MORB source. The rocks have moderately fractionated REE patterns with (La/Lu)N = 2–12. Geochemical data suggest that the volcanites evolved by shallow-level fractional crystallization and magma-mixing contamination of a parental magma derived from metasomatized upper mantle by partial melting after thickening of the Pontide arc during the Paleocene-Eocene. Furthermore, differentiation took place in a magma chamber situated in the thickened arc crust within an extensional tectonic regime.  相似文献   

4.
The Sardinia-Corsica batholith was structured in the late stage of the Hercynian orogenesis. The granitoids intrude mainly metamorphic complexes grading from zeolite up to amphibolite facies. The batholith is heterogeneous consisting of complexes with different affinity, chemical composition, age and degree of deformation. The present paper reports major-and trace-element data for selected samples coming only from Sardinian outcrops.

The rocks range from gabbro-diorite to tonalite, monzogranite and leucogranite. The two latter lithologies are the most abundant, gabbrodiorites and tonalites occurring in minor amounts and mainly in northern-central Sardinia. Over 75% of the granitoids contain microgranular enclaves of magmatic origin. The age of the rocks falls in the interval between 307 and 281 Ma. Sr isotope initial ratios are high, ranging between 0.7083 and 0.7107.

REE, Rb, Sr, Ba, Zr, Th, Ta, Hf, Co and Sc abundances were determined on selected samples. All elements follow three types of trends vs. CaO, which is used as differentiation index. Two trends show positive and negative correlations while the third one shows a bell-shaped pattern. LREE have different degrees of enrichment (La = 20−120× ch) and HREE show variable fractionation with prevailing (Tb/Yb)n<1. The two peraluminous samples have very different geochemical characteristics.

From the geochemical point of view all the rocks coming from the Sardinian segment of the batholith display a typical calc-alkaline chemical character showing the imprint of both “normal and mature” continental arc geodynamic environments.

Geochemical trends suggest some petrogenetic constraints. The complete sequence of differentiation can be neither the product of crystal/liquid fractionation processes starting from a single basic parent magma nor the product of an AFC process. On the contrary, a two-stage model can be proposed. In the first stage a mafic melt of subcrustal origin interacted with monzogranitic magmas derived from 25–35% degree of melting of a crustal biotite amphibolitic source. Such a mixing process acted together with a crystal/liquid fractionation process to give tonalites and granodiorites. In the second stage lesser degrees of melting of the same crustal source could give the late-stage leucogranitic masses.

A possible scenario, able to take into account field and geochemical data, can be suggested for the genesis of this suite and we propose it as a working model for future investigations.  相似文献   


5.
Twelve138Ce/136Ce isotope determinations, 31 Nd isotope analyses, and 31 REE profiles are presented for Tertiary basic to intermediate igneous rocks from the Isle of Skye, NW Scotland. The aim of this work is to precisely identify the contamination mechanisms of basic magmas emplaced through old crust, and to test the effectiveness of Ce isotope analysis as a petrogenetic tool.Combined Ce/Nd isotope analysis enables the modelling of the light REE profiles of the mantle-derived precursors to contaminated lavas, using different crustal end-members, in order to compare these with the magmatic lineage of uncontaminated Skye lavas. The geochemical data support a contamination mechanism involving a granitic melt, produced either by large degree melting of Scourian granulitefacies acid sheets, or (possibly) by melting of intermediate gneiss out of isotopic equilibrium.Basaltic lavas showing strong isotopic contamination effects yield calculated degrees of crustal contamination by large degree granitic melts of ca. 8 or 9% based on Ce and Nd isotopic data respectively. However, for lavas with liquidus temperatures of over 1250° C, the temperature dependence of the degree of contamination is weak.The combination of this evidence with new and published Pb isotope data suggests that the bulk of crustal contamination of the Skye lavas occurred in sill complexes at distinct levels in the crust, rather than during the actual ascent of magma through the crust in dykes. It is suggested on the basis of published fluid dynamic and field evidence that the assimilation of large degree melts of acid gneiss by turbulently flowing magma is more likely than assimilation of small degree disequilibrium melts from more refractory intermediate gneisses.It is concluded that Ce isotope analysis is a viable and useful adjunct to Nd isotope data in petrogenetic studies of continental igneous rocks emplaced through old basement.  相似文献   

6.
Large charnockite massifs occur in some of the Precambrian high-grade terrains like the southern Indian granulite terrain. The Cardamom Hill charnockite massif from the Madurai Block, southern India, consists of an intermediate type and silicic type, with the intermediate type showing similarities to high-Ba−Sr granitoids with low K2O/Na2O ratios and the silicic type showing similarities to high-Ba–Sr granitoids with high K2O/Na2O ratios. Within the constraints imposed by near basaltic composition of the most mafic samples and their relatively high concentrations of both compatible and incompatible elements, comparison with recent experimental studies on various source compositions, and trace- and rare-earth-element modeling, the distinctive features of the intermediate charnockites can be best explained in terms of assimilation–fractional crystallization (AFC) models involving interaction between a mantle-derived basaltic magma and lower crustal materials. Silicic charnockites on the other hand are high temperature melts of moderately hydrous basaltic magmas. A two-stage model which involves an initial partial melting of hydrous basaltic magma and later fractionation explains the geochemical features of the silicic charnockites, with the fractionation stage most probably an open system AFC. It is suggested that for massifs showing spatial association of intermediate and silicic charnockites, a model taking into account their compositional difference in terms of the effect of variations in the conditions (e.g., temperature, water fugacity) that prevailed, can account for plausible petrogenetic scenarios.  相似文献   

7.
The process of coupled assimilation and fractional crystallization (AFC) is one of the most popular petrogenetic concepts that explains magmatic differentiation. Conventional geochemical models for this process assume that crystals are removed instantaneously from the magma body as they are produced; however, recent advances in isotopic microanalysis have clarified that the crystals are suspended within the magma body for a certain period, affecting the whole-rock composition in response to the intra-grain isotopic zoning. This study develops a mass balance model for simultaneous assimilation and imperfect fractional crystallization (AIFC) to describe the effects of suspended crystals on the path of magma evolution. The mass balance differential equations for the liquid and suspended crystals are solved simultaneously. The analytical solution of the AIFC equations gives a quantitative account of the evolution paths of trace elements and isotopes within bulk crystals, liquid, and magma (crystals plus liquid). The chemical path of the magma differs markedly from that predicted by the conventional AFC model.  相似文献   

8.
The Myggbukta caldera complex and a swarm of basic dykes constitute the latest Tertiary magmatism in the Hold with Hope region, East Greenland. The Sr and Nd isotope ratios of these rocks show coherent variations which extend to high 87Sr/86Sr and low 143Nd/144Nd values and require a contribution from continental lithosphere. Broad correlations with major element differentiation indices suggest that the continental component was incorporated during magmatic differentiation thereby favouring a crustal contamination process. Trace element concentrations are strongly correlated with isotopic compositions but display ranges for many incompatible elements which extend beyond likely crustal contaminant compositions. This is readily modelled by AFC processes in which the dominant cause of trace element enrichment is the concentration effect of fractional crystallisation rather than the composition of the contaminant. The simplest such models still require unrealistically high degrees of fractional crystallisation to explain the ten-fold enrichment of some trace elements. This can be overcome if the primary magmas entering the crust already had highly variable trace element compositions. Such variability is readily achieved if melts from different parts of the melting column escape without thorough homogenization. An AFC model which incorporates variability in parental magma composition is then able to simulate the range of compositions observed at Hold with Hope. This carries the implication that the variations observed are more readily attributed to changes in uncontaminated parental magma than to variations in the composition or amount of contaminant. Received: 5 March 1998 / Accepted: 16 June 1998  相似文献   

9.
定结日玛那穹窿位于高喜马拉雅带中段,由花岗片麻岩、变泥质岩、变基性岩及大量淡色花岗岩等组成,经历了角闪岩-麻粒岩相变质作用。为厘定淡色花岗岩的形成机制以及与高级变质岩的关系,我们对淡色花岗岩和高级变质岩进行了全岩元素和Sr和Nd同位素组成和SHRIMP锆石U-Pb地质年代学测试。全岩元素和Sr-Nd同位素测试结果揭示淡色花岗岩具有以下特征:(1)高SiO2 (>72%),高Al2O3 (>12%)和高A/CNK比值 (>1.0);(2)高Rb,低Sr,高Rb/Sr比值(>1.0);(3)高∑REE和明显的负Eu异常;(4)高Sr同位素初始比值(0.7621~0.8846)和低εNd(t)值(-13.0~-20.2)。淡色花岗岩的高Rb/Sr比值和Sr-Nd同位素系统特征表明其形成机制为主要为白云母脱水部分熔融作用,源区为由花岗片麻岩和变泥质岩组成的混合源区。SHRIMP锆石U-Pb年代学研究揭示出定结地区淡色花岗岩具有21.0±0.7Ma和15.8±0.1Ma 2期年龄,花岗片麻岩的锆石变质增生边年龄为22.2±1.4Ma,与该区的榴辉岩退变质年龄一致。这些数据共同表明,花岗片麻岩和 变泥质岩在22~21Ma发生高级变质和深熔作用,形成早期淡色花岗岩岩浆,在~16Ma进一步深熔,形成晚期淡色花岗岩岩浆。  相似文献   

10.
《International Geology Review》2012,54(13):1522-1558
The Melrose Stock in the Dolly Varden Mountains of east-central Nevada is one of the many Mesozoic intrusion s in the Basin and Range Province. It consists of monzonites, quartz monzonites, granodiorites, and granites sharply intruding Mississippian to Triassic units. Phenocrysts of plagioclase (An38–An24) with oscillatory zoning and albitic rims, hornblende ± diopside, and biotite are common. Coexisting phases include orthoclase, quartz and accessory magnetite, apatite, titanite, ilmenite, and allanite. Mineral compositions suggest that the intrusion was emplaced at ~720 ± 40°C and 1.8–2.3 kbar.

All rocks are metaluminous to slightly peraluminous, defining a calcalkalic trend in which the monzonites and syenites are shoshonitic. Rare earth element patterns indicate that all studied rock types are comagmatic. Harker plots show curvilinear trends with some kinks consistent with fractionation, and mixing/assimilation. Major-element modelling and petrographic evidence suggest three stages of fractionation/mixing: Stage 1 marked by the fractionation of diopside and plagioclase; Stage 2 by fractionation of plagioclase, hornblende ± orthoclase ± biotite, accompanied by mixing through convection; and Stage 3 by fractionation of biotite, hornblende, plagioclase, and orthoclase.

Mineralogic, petrographic, and major- and trace-element data demonstrate that all rocks are I-type granitoids, suggesting a significant mantle contribution. Spider diagrams show troughs for Ti, P, and Nb, indicating magma genesis in a subduction-zone setting. Discrimination diagrams classify all rocks as late orogenic. Magma was therefore generated from mantle metasomatized by subduction, differentiated to a monzonitic magma, and emplaced in the thinned continental crust during a period of extension late in the cycle of Elko orogeny.  相似文献   

11.
Olivine-hosted melt inclusions have been analyzed from the young (4,150 ± 300 ybp) Dotsero basaltic (48.2 wt% SiO2) lava flow in Northwest Colorado, USA. Silicate melt-inclusion compositions have a bimodal distribution (41–46 wt% SiO2 and 47–50 wt% SiO2). Low-Si melt inclusions record high pre-eruptive sulfur concentrations (>1,000 ppm S) and variations in their major- and trace-element compositions appears to be related to shallow assimilation of local basement sandstone. Whole-rock compositions are modeled as a contamination of low-Si inclusion compositions with ~10 wt% sandstone. Host olivine crystallization may have accompanied magma injection into a shallow storage chamber. In contrast to the low-Si melt inclusions, the high-Si population is relatively degassed and records late-stage rapid crystallization either during or post-eruption. Hopper or skeletal olivine grains in conjunction with the bimodal inclusion compositions suggest relatively rapid cooling rates at the time of eruption and inclusion entrapment. Inclusion compositions, in conjunction with mineral textures, therefore provide a more complete picture of shallow magma processes, coupling the relative timing of undercooling and crystallization, assimilation and melt compositional evolution. Most of the inclusion and host textural and compositional data indicates late and very shallow petrogenetic processes and does not appear to record deeper (mid-, lower-crustal) processes.  相似文献   

12.
High-K calc-alkalic plutons represent a significant proportion of the abundant magmatic bodies that intruded Borborema province (BP) of northeastern Brazil during the Neoproterozoic Brasiliano (Pan-African) orogeny. They consist of an association of mafic to intermediate (diorites to granodiorites) and felsic rocks (coarse-grained to porphyritic quartz monzonites to granites). Field and petrographic evidence indicates that the felsic and mafic rocks coexisted as contemporaneous melts, and major- and trace-element data favor magma mixing over fractional crystallization as the main petrogenetic process responsible for the petrographic and geochemical variability of these rocks. Major- and trace-element, oxygen-isotope, and radiogenic-isotope (Sr and Nd) data suggest that (1) the main source rocks of the granitoids are lower-crustal amphibolites having rare-earth-element (REE) and isotopie characteristics similar to the associated mafic rocks and (2) the source region of the diorites is the metasomatized subcontinental lithospheric mantle. These inferences imply that crustal growth occurred during the Brasiliano orogeny. Dewatering of the mantle and lower crust and addition of consolidated mafic rocks and I-type granitoids to the middle crust certainly strengthened the entire lithosphere, thus contributing to the final cratonization of the BP.

Field evidence indicates that the BP high-K calc-alkalic plutons were emplaced in an intracontinental setting, implying that this magmatism was not subduction-zone related. Although the plutons are spatially associated with transcurrent shear zones, the scale of magmatism is too broad to be assigned to shear heating. 40Ar/39Ar data indicate that large areas of the BP underwent slow cooling, unlike orogenic belts where delamination or convective removal of the lithosphere occurred. Therefore, only large convective instabilities in the sublithospheric mantle may explain the thermal anomaly responsible for melting in the BP. It is proposed that a mantle plume impinging the base of the continental lithosphere under the BP may represent such a laterally extensive and long-lived heat source.  相似文献   

13.
A suite of garnet-bearing andesites and dacites from the Ordovician of N. W. England is described and major- and trace-element analyses of the garnet phenocrysts are presented. The garnets are of almandine-pyrope composition, with minor amounts of spessartine and grossular, and often show marked reversed zoning; the crystal becoming progressively enriched in pyrope towards the margin. Garnets from the dacites are consistently richer in almandine and spessartine than are those from the andesites.From a consideration of the chemistry of the garnet phenocrysts and host rocks, especially La and Y abundances, it is shown that garnet could not have been removed from the magma in quantities sufficient to affect the liquid composition. Consequently the magma must have evolved by some process other than crystal fractionation. It is proposed that the magma was generated by the partial melting of oceanic crust along an ancient Benioff zone, stored at depth (possibly at the crust/mantle interface) long enough for garnet to nucleate, and then transferred rapidly to the surface. Isobaric crystallisation of the garnet phenocrysts at depth could explain the reversed zoning observed.  相似文献   

14.
施粮  林培贡 《现代地质》1991,5(2):208-214
内蒙古卓资地区零星分布的含磷灰石白云质大理岩的成因一直是有争议的问题,争论的焦点在于它是沉积变质的碳酸盐岩还是岩浆碳酸岩。对这个问题的不同认识直接关系到这种岩石本身是否具有形成岩浆碳酸岩型磷灰石矿床的可能。本文在对含磷灰石白云质大理岩进行比较详细的地质、矿物、岩石和地球化学等诸方面研究的基础上,确认它是沉积变质的碳酸盐岩,而不是岩浆碳酸岩,该大理岩本身不具备形成岩浆碳酸岩型磷灰石矿床的条件。  相似文献   

15.
Melt inclusions in clinopyroxenes from lherzolitic xenoliths from the deep lithospheric mantle beneath the Slave Craton (Lac de Gras area, Canada) reveal multiple origins for carbonatitic melts. One type of inclusions consists of a series of silicate–carbonate–silicate concentric layers, interpreted to have unmixed under disequilibrium conditions during rapid ascent to the surface. Bulk major- and trace-element compositions are typical of Group 1 kimberlites and quantitative nuclear microprobe imaging of the globules reveals fractionation of related elements (e.g. F–Br, Nb–Ta) between the silicate and carbonate components. The globules probably formed by partial melting of carbonated peridotite, consistent with results of melting experiments and some models for the generation of kimberlite magmas. They provide evidence for a genetic relationship between some carbonate-rich magmas and ultramafic silicate magmas, and for the possibility of unmixing processes of these melts during their evolution.

The second inclusion type comprises carbonate-rich globules interpreted as samples of Mg-carbonatite melt that quenched on ascent to the surface. Bulk major- and trace-element compositions indicate that the melts were derived from a carbonate-rich source and oxygen, carbon, and strontium isotope data are consistent with the involvement of recycled crustal material and suggest that some mantle-derived carbonatites are unrelated to kimberlites.  相似文献   


16.
The Abbott Unit (∼508 Ma) and the Vegetation Unit (∼475 Ma) of the Terra Nova Intrusive Complex (northern Victoria Land, Antarctica) represent the latest magmatic events related to the Early Paleozoic Ross Orogeny. They show different emplacement styles and depths, ranging from forcible at 0.4–0.5 GPa for the Abbott Unit to passive at ∼0.2 GPa for the Vegetation Unit. Both units consist of mafic, felsic and intermediate facies which collectively define continuous chemical trends. The most mafic rocks from both units show different enrichment in trace element and Sr-Nd isotopic signatures. Once the possible effects of upper crustal assimilation-fractional crystallisation (AFC) and lower crustal coupled AFC and magma refilling processes have been taken into account the following features are recognised: (1) the modelled primary Abbott Unit magma shows a slightly enriched incompatible element distribution, similar to common continental arc basalts and (2) the modelled primary Vegetation Unit magma displays highly enriched isotope ratios and incompatible element patterns. We interpreted these major changes in magmatic affinity and emplacement style as linked to a major change in the tectonic setting affecting melt generation, rise and emplacement of the magmas. The Abbott Unit mafic melts were derived from a mantle wedge above a subduction zone, with subcontinental lithospheric mantle marginally involved in the melting column. The Vegetation Unit mafic melts are regarded as products of a different source involving an old layer of subcontinental lithospheric mantle. The crustal evolution of both types of mafic melts is marked by significant compositional contrasts in Sr and Nd isotopes between mafic and associated felsic rocks. The crustal isotope signature showed an increase with felsic character. Geochemical variations for both units can be accounted for by a similar two-stage hybridisation process. In the first stage, the most mafic magma evolved mainly by fractional crystallisation coupled with assimilation of metasedimentary rocks having crustal time-integrated Sr and Nd compositions similar to those of locally exposed metamorphic basement. The second stage involves contaminated products mixing with independently generated crustal melts. Petrographic, geochemical and isotope data also provide evidence of significant compositional differences in the felsic end-members, pointing to the involvement of metaigneous and metasedimentary source rocks for the Abbott granite and Vegetation leucogranite, respectively. Received: 31 March 1998 / Accepted: 3 May 1999  相似文献   

17.
本文在研究西藏北拉萨块体中段桑心日岩体中的暗色包体时发现了一种具有特殊岩石成因的暗色包体。暗色包体呈椭球状,在暗色包体和寄主岩的接触面上通常形成一个明显的可能由风化作用造成的间隙面。暗色包体为二长玢岩-花岗闪长玢岩,寄主岩为花岗岩,暗色包体明显较寄主岩更基性,更富Na_2O、CaO、MgO和Fe_2O_3~T。暗色包体和寄主岩具有明显不同的稀土元素特征,暗色包体的稀土元素含量变化较大,最基性样品具有最高的稀土含量,随着基性程度的降低稀土元素含量明显下降。随着岩浆的进一步演化,岩浆向花岗岩方向演化,稀土含量又逐步升高。寄主岩和暗色包体具有基本一致的微量元素组成,具有典型的弧岩浆岩的特征,富集Rb、Cs、K等大离子亲石元素和Th、U,亏损Nb、Ta、Ti等高场强元素。此外,暗色包体和寄主岩具有明显的Ba、Sr的负异常。暗色包体成岩年龄为75. 6±1. 2Ma,寄主岩的成岩年龄为71. 8±0. 6Ma,暗色包体成岩年龄较寄主岩早约4Myr。两者具有一致的锆石原位Lu-Hf同位素特征。综合以上岩相学、年代学、元素地球化学和同位素地球化学证据,我们认为桑心日暗色包体和寄主岩来源于同源母岩浆,初始岩浆在母岩浆房中经历了不同程度的含钾角闪石结晶分离作用,并沿早期较弱的构造裂隙侵入到地壳的某一层位,随着构造活动进一步加剧,经过进一步分异母岩浆大规模上侵,并将早先侵位处于半塑性状态的暗色包体侵吞、裹挟至近地表。桑心日暗色包体最可能的成因模式可以解释为同源岩浆不同期次间的物理混合。  相似文献   

18.
对国内外30个实例的汇总表明,所谓"广西型花岗岩"不具备张旗(2014)所认为的岩石学和地球动力学意义。富Sr和Yb的"广西型花岗岩"在岩性包含了中性岩、酸性岩和过碱性岩,绝大多数具有负Eu异常。从岩石组合(系列)方面看,"广西型花岗岩"是钙碱性系列、碱性系列与A型花岗岩的"混杂"。"广西型花岗岩"可以是基性岩浆分离结晶或分离结晶+混染(AFC)、壳源岩石部分熔融等多种成岩机制的产物,斜长石是结晶相或残留相。对不同源岩的失水熔融相图的比较分析表明,花岗岩类的全岩Sr、Yb含量不是指示花岗质岩浆起源压力的可靠指标,张旗提出的以"Sr-Yb"为基础的花岗岩分类没有地球动力学意义。  相似文献   

19.
We present results of investigation of the trace-element (REE, HFSE) and Hf isotope compositions and U-Pb age of single zircons crystallized from alkaline-carbonatite magmas of the Ilmeny-Vishnevogorsky complex (IVC) (Urals, Russia). It has been established that the geochemical characteristics of the early zircon (U-Pb age of 430-410 Ma) from alkaline rocks and carbonatites of this complex are determined mainly by the magmatic evolution of parental fluid-saturated alkaline-carbonatite melts and are highly associated with the cocrystallization of zircon and uranium-containing rare-metal minerals (gatchettolite and pyrochlore) at the final stages of the magmatic-system activity. The early zircons have a moderately depleted Hf isotope composition (eHf from + 11.3 to + 4.7), confirming the mantle nature of the magma source and indicating the participation of DM-like and enriched-source (probably, lower-crust component) substances in the magma generation. The considerable variations in the initial Hf isotope composition of the early zircons testify to the multistage zircon crystallization involving new portions of melts with different isotope compositions controlled by mixing of substances at their source. Late IVC zircons (250-350 Ma) have strongly disturbed “rejuvenated” isotope systems and a geochemical composition different from that of the magmatic zircons. They formed apparently at the metamorphic stage of the IVC evolution without a significant input of additional material.  相似文献   

20.
Concentric zoning in the Criffell pluton takes the form of a discontinuous outer margin of metaluminous hornblende granodiorite and an inner core of increasingly peraluminous muscovite granite. Previous investigations using major and selected trace elements have shown the variation to consist of both smooth and abrupt trends. This study of 15 samples for the rare earth elements shows patterns which strongly correlate with Sr and O isotope data. The principal feature of these data is a progressive decrease in total rare earths with approach to the geochemical centre of the pluton, and evolution to more radiogenic Sr and more silicic and peraluminous compositions. No significant europium anomaly is developed. The slope of light to heavy rare earths using La/Yb ratios varies in a complex manner showing no significant correlation with any of the main indices of bulk composition, but with peak values occurring within the inner part of the outer portion of the pluton. A map of Ce/Y variation based on 172 Ce and Y determinations is essentially identical. These data are considered in terms of various petrogenetic models and it is concluded that the data can only be interpreted in terms of a major and progressive involvement of crustally-derived anatectic magma towards the pluton interior. Trace element modelling favours processes of the assimilation-fractional crystallisation (AFC) type for the generation of this example of I-type to S-type granitoid zonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号