首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subsolidus phase relations of the SrO–MO2–CuO (M = Ti, Zr and Hf) systems were investigated in air. The samples were equilibrated at 900 °C. The SrTi4Cu3O12 compound is the only ternary oxide phase stable under these conditions in the investigated systems. This phase is non-stoichiometric, its actual composition being Sr0.95Ti4.05Cu2.95Ox. The SrO–ZrO2–CuO and SrO–HfO2–CuO systems have a similar structure. No Zr or Hf equivalents of the SrTi4Cu3O12 phase were formed under the present conditions.  相似文献   

2.
The subsolidus phase relations in the SrO–Ga2O3–B2O3 system were investigated. The system contains 10 binary compounds and two ternary compounds, and can be divided into 15 three-phase regions. The new ternary compound SrGaBO4 has two modifications (- and β-phases), both of which crystallize in the orthorhombic system but with different space groups.  相似文献   

3.
The subsolidus phase relations of the ternary system ZnO–P2O5–MoO3 were investigated by means of X-ray diffraction (XRD). Seven binary compounds and eight 3-phase regions were determined, and no ternary compound was found in this system. The phase diagram of pseudo-binary system Zn3(PO4)2–Zn3Mo2O9 was also constructed through XRD and differential thermal analysis (DTA) methods, and the result reveals this system is eutectic system. The eutectic temperature is 904 °C and the corresponding component is 30% Zn3Mo2O9 and 70% Zn3(PO4)2.  相似文献   

4.
5.
As a systematic search for suitable flux to grow zinc oxide single crystals, the subsolidus phase relations of the ternary system ZnO–Li2O–P2O5 were investigated by means of X-ray diffraction (XRD). There are 6 binary compounds, 5 ternary compounds and 17 three-phase regions in this system. A new compound, Li6Zn(P2O7)2, is found in this system based on XRD experiments. The phase diagrams of the pseudo-binary systems Li3PO4–ZnO and LiZnPO4–ZnO are investigated. It shows that the compounds, Li3PO4 and LiZnPO4, are not suitable as flux for the growth of ZnO single crystals below 1250 °C.  相似文献   

6.
The phase relations in the ternary system Yb–Zn–In have been established for the partial isothermal section in the 0–33.3 at.% ytterbium concentration range at 400 °C, by researching of more than forty alloys. X-ray powder diffraction (XRPD), optical microscopy (OM) and scanning electron microscopy (SEM), complemented with energy dispersive X-ray spectroscopy (EDS), were used to study the microstructures, identify the phases and characterize their crystal structures and compositions. The phase equilibria of this Yb–Zn–In partial section at 400 °C are characterized by the presence of three extended homogeneity ranges, indium solubility in Yb13Zn58 and YbZn2 and of zinc solubility in YbIn2, and the existence of one ternary intermetallic compound, YbZn1−xIn1+x, x = 0.3. This new compound crystallizes in the UHg2 structure type (space group P6/mmm), with a = 4.7933(5) Å, c = 3.6954(5) Å. The studied partial isothermal section has eight ternary phase fields at 400 °C.  相似文献   

7.
The subsolidus phase relation of the system ZnO–Li2O–MoO3 has been investigated by X-ray diffraction (XRD) analyses. The phase diagram has been constructed. There are six binary compounds and one ternary compound in this system. The phase diagram comprises nine three-phase regions. The ternary compound Li2Zn2(MoO4)3 is refined by the Rietveld method. It belongs to an orthorhombic system with space group Pnma and lattice constants a = 5.1114 Å, b = 10.4906 Å, c = 17.6172 Å.  相似文献   

8.
Partial isothermal sections of the Al–Pd–Ru phase diagram at 1000, 1050 and 1100 °C are presented here. The Al–Pd orthorhombic -phases dissolve up to 15.5 at.% Ru, Al13Ru4 <2.5 at.% Pd and Al2Ru up to 1 at.% Pd. Between 66 and 75 at.% Al, ternary quasiperiodic icosahedral phase and three cubic phases: C (, a = 0.7757 nm), C1 (, a = 1.5532 nm) and C2 (, a = 1.5566 nm) were revealed. An additional complex cubic structure with a ≈ 3.96 nm was found to be formed at compositions close to those of the icosahedral phase.  相似文献   

9.
The phase equilibria at 500 °C in the Al–Ce–Ni system in the composition region of 0–33.3 at.% Ce are investigated using XRD and SEM/EDX techniques applied to equilibrated alloys. The previously reported ternary phases and the variation of the lattice parameters versus the composition for different solid solution phases are investigated. It is confirmed that τ2(Al2CeNi) exists at 500 °C, while τ3(Al5Ce2Ni5) does not exist at 500 °C. A new compound τ9 with composition of about Al35Ce16.5Ni48.5 is found. The solubility of Ni in Al11Ce3 and αAl3Ce is generally about 1 at.%, while the solubility of Ni in Al2Ce is measured to be 2.7 at.%. The solubility of Ce in Al3Ni, Al3Ni2, AlNi and AlNi3 is all less than 1 at.%. The solubility of Al in CeNi5, Ce2Ni7 and CeNi3 is measured to be 30.4, 4.8 and 9.2 at.%, respectively, while there is no detectable solubility for Al in CeNi2. A revised isothermal section at 500 °C in the Al–Ce–Ni system has been presented.  相似文献   

10.
The subsolidus phase relations of the ternary system ZnO-WO3-Bi2O3 were investigated by means of X-ray diffraction (XRD). Six binary compounds and seven 3-phase regions were determined, and no ternary compounds were found in this ternary system. The phase diagram of pseudobinary system ZnO-Bi2WO6 was also constructed through XRD and differential thermal analysis (DTA) methods, which forms eutectic system with eutectic temperature about 945 °C, the corresponding eutectic component is 35 mol% ZnO and 65 mol% Bi2WO6.  相似文献   

11.
Subsolidus phase relations of the constant copper oxide content (50 mol%) section in the PrO11/6–BaO–CaO–CuO system at 950 °C in air are investigated by means of X-ray diffraction analyses. The phase relations consist of 1 single-phase region, 1 two-phase region, 2 three-phase regions and 6 four-phase regions. Mutual substitutions among Pr, Ba and Ca in the Pr123 structure were studied in detail. The result indicates that Ba ions can be replaced exclusively by Pr ions, but not by Ca ions, whereas Ca ions can partially occupy the sites of Pr ions. The ionic radius plays a more important role than the chemical property for substitution among Pr, Ba and Ca ions in the Pr123 structure.  相似文献   

12.
An isothermal section of the quasi-ternary system Ag2S–CdS–In2S3 at 870 K was investigated using X-ray phase analysis. No quaternary intermediate phase was found. A continuous solid solution series between In2S3, AgIn5S8 and CdIn2S4 was discovered; a limited solid solution range of CdS is localized along the AgInS2–CdS section.  相似文献   

13.
The isothermal section of the phase diagram of the Al–Pr–Sb ternary system at 773 K over the whole concentration region has been investigated mainly by powder X-ray diffraction (XRD) with the aid of scanning electron microscopy (SEM). A new ternary compound Al11Pr24Sb65 has been found.  相似文献   

14.
Five rare-earth R5CoSb2 antimonides have been synthesized and characterized by means of X-ray powder diffraction data. The investigated ternary compounds crystallize with orthorhombic ordered substituted variant of the Yb5Sb3 structure type (space group Pnma, Pearson symbol oP32). Atomic and thermal parameters have been refined for all intermetallic phases.  相似文献   

15.
Solid state phase equilibria in the ternary Fe–Ga–Sb diagram were determined at 600 °C using experimental techniques such as X-ray diffraction, electron probe microanalysis and scanning electron microscopy. Very limited solid solutions were measured in the binary constituent Fe–Ga and Fe–Sb compounds except for the -phase (Fe≈2.55Sb2) which extends from 42 to 48 at.% Sb. In the Fe-rich part of the diagram, a ternary phase FetGa2−xSbx (2.15≤t≤2.80) was evidenced which corresponds in fact to a solid solution into which Ga and Sb substitute one another on the same hexagonal sublattice. This phase, which can be truly considered as a pseudo-binary one since its origin results from the -phase, shows an extended homogeneity range with a Ga-rich limit corresponding to the formula FetGa0.8Sb1.2. Moreover, it crystallizes in hexagonal symmetry with a disordered structure derivative from the NiAs-type (B81). This pseudo-binary phase is in thermodynamic equilibrium with all the binaries of the system except FeGa3. The main result of the ternary Fe–Ga–Sb diagram remains the existence of a diphasic region between the FetGa2−xSbx phase (1.2≤x≤1.6; 2.15≤t≤2.80) and the semiconductor GaSb. Nevertheless, at 600 °C, this pseudo-binary phase does not extend up to the Fe3GaSb composition which is stoichiometric in Ga and Sb. Finally, a comparative study has been made with the three other ternary systems Fe–Ga–As, Ni–Ga–As and Ni–Ga–Sb previously reported, and the consequences for the solid state interdiffusions in Metal/III–V semiconductor heterostructures are discussed.  相似文献   

16.
The subsolidus phase relations in the ZnO–MoO3–B2O3, ZnO–MoO3–WO3 and ZnO–WO3–B2O3 ternary systems have been investigated by the means of X-ray powder diffraction (XRD). There is no ternary compound in all the systems. There are five binary compounds and five tie lines in the ZnO–MoO3–B2O3 system. This system can be divided into six 3-phase regions. There are three binary compounds and three tie lines in the ZnO–MoO3–WO3 system. This system can be divided into four 3-phase regions. There are four binary compounds and four tie lines in the ZnO–WO3–B2O3 system. This system can be divided into five 3-phase regions. The possible component regions for ZnO single crystal flux growth were discussed. The phase diagram of Zn3B2O6–ZnWO4 pseudo-binary system has been constructed, and the result reveals this system is eutectic system. The eutectic temperature is 1007 °C and eutectic point component is 70 mol% Zn3B2O6.  相似文献   

17.
The amorphous precursors of the ZrO2–GaO1.5 system on the ZrO2-rich side of the concentration range were prepared by co-precipitation from aqueous solutions of the corresponding salts. Thermal behavior of the amorphous precursors was monitored using differential thermal analysis (DTA), X-ray powder diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). Crystallization temperature of the amorphous precursors rose with an increase in the GaO1.5 content, from 405 °C (0 mol% GaO1.5) to 720 °C (50 mol% GaO1.5). The results of Rietveld refinements indicated that the maximum solubility of Ga3+ ions in the ZrO2 lattice (43 mol%) occurred in the metastable products obtained after crystallization of the amorphous precursors. Further thermal treatment caused a decrease of the solubility limits, which became negligible after calcination at 1100 °C. The results of Raman spectroscopy showed that the incorporation of Ga3+ ions partially stabilized the tetragonal polymorph of ZrO2, but could not stabilize its cubic polymorph. The incorporation of Ga3+ ions caused a linear decrease in the unit-cell volume of the ZrO2-type solid solutions, but the rate of the decrease turned out to be smaller than the rate obtained after the incorporation of bigger Fe3+ ions.  相似文献   

18.
The subsolidus phase relationships of the system ZnO–Li2O–WO3 have been investigated by X-ray diffraction (XRD) analyses. There are one ternary compound, five binary compounds and eight 3-phase regions in this system. The new ternary compound Li2Zn2W2O9 was found by the powder diffraction pattern. The corresponding crystal structure of this compound was refined by Rietveld profile fitting method. It belongs to a trigonal system with space group and lattice constants are a = 5.1438(2) Å, c = 14.1052(3) Å, and its thermal property was studied.  相似文献   

19.
The structural and magnetic properties of doubly substituted Nd2Fe17−xyTixGay (0  x  1.0, 0  y  3) compounds have been investigated by a combined technique of X-ray diffraction, neutron diffraction and magnetic measurements. Rietveld refinements of the diffraction data indicate that all the samples crystallize in the rhombohedral Th2Zn17-type structure. For a given Ti content (x), the lattice parameters a and c, and unit cell volume V of Nd2Fe17−xyTixGay all increase linearly with increasing Ga content. The addition of Ti initially has a considerably positive effect on the increasing rates of a, c, and unit cell volume V, but later the effect becomes very slight and even negative with the further increase of Ti content. The site occupancies of Ti and Ga in the crystallographic sites change a little compared to what is observed in the corresponding singly substituted compounds. The effects of Ti and Ga on the bond lengths of the doubly substituted compounds are quite different from that of the singly substituted compounds. Magnetic measurements show the TC of Nd2Fe17−xyTixGay increases with increasing Ti content for a low Ga content while it behaves conversely for a higher Ga content. The TC of Nd2Fe17−xyTixGay increases with increasing Ga content for a particular Ti content, while the addition of Ti results in a slower increase of TC on the Ga content (y  3). For a given Ti content, the Ms of Nd2Fe17−xyTixGay first increases a little and then decreases with the increase of Ga content, while for a given Ga content the Ms of Nd2Fe17−xyTixGay decreases with the increase of Ti content.  相似文献   

20.
The present work investigates the hot corrosion resistance of detonation gun sprayed (D-gun) Cr3C2–NiCr coatings on Superni 75, Superni 718 and Superfer 800 H superalloys. The deposited coatings on these superalloy substrates exhibit nearly uniform, adherent and dense microstructure with porosity less than 0.8%. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of bare and Cr3C2–NiCr coated superalloys in molten salt environment (Na2SO4–60% V2O5) at high temperature 900 °C for 100 cycles. The corrosion products of the detonation gun sprayed Cr3C2–NiCr coatings on superalloys are analyzed by using XRD, SEM, and FE-SEM/EDAX to reveal their microstructural and compositional features for elucidating the corrosion mechanisms. It is shown that the Cr3C2–NiCr coatings on Ni- and Fe-based superalloy substrates are found to be very effective in decreasing the corrosion rate in the given molten salt environment at 900 °C. Particularly, the coating deposited on Superfer 800 H showed a better hot corrosion protection as compared to Superni 75 and Superni 718. The coatings serve as an effective diffusion barrier to preclude the diffusion of oxygen from the environment into the substrate superalloys. It is concluded that the hot corrosion resistance of the D-gun sprayed Cr3C2–NiCr coating is due to the formation of desirable microstructural features such as very low porosity, uniform fine grains, and the flat splat structures in the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号