首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a new method for determination of the desired characteristic equation and zero location of commensurate fractional order systems is presented. The concept of the characteristic ratio is extended for zero-including commensurate fractional order systems. The generalized version of characteristic ratios is defined such that the time-scaling property of characteristic ratios is also preserved. The monotonicity of the magnitude frequency response is employed to assign the generalized characteristic ratios for commensurate fractional order transfer functions with one zero. A simple pattern for characteristic ratios is proposed to reach a non-overshooting step response. Then, the proposed pattern is revisited to reach a low overshoot (say for example 2%) step response. Finally, zero-including controllers such as fractional order PI or lag (lead) controllers are designed using generalized characteristic ratios assignment method. Numerical simulations are provided to show the efficiency of the so designed controllers.  相似文献   

2.
This paper focuses on the fractional difference of Lyapunov functions related to Riemann–Liouville, Caputo and Grünwald–Letnikov definitions. A new way of building Lyapunov functions is introduced and then five inequalities are derived for each definition. With the help of the developed inequalities, the sufficient conditions can be obtained to guarantee the asymptotic stability of the nabla discrete fractional order nonlinear systems. Finally, three illustrative examples are presented to demonstrate the validity and feasibility of the proposed theoretical results.  相似文献   

3.
This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results.  相似文献   

4.
A novel numerical approximation scheme is proposed for fractional order systems by the concept of identification. An identical equation is derived firstly, from which one can obtain the exact state space model of fractional order systems. It reveals the nature of the approximation problem, and then provides an effective scheme to obtain the desired model. This research project also focuses on solving a knotty but crucial issue, i.e., the initial value problem of fractional order systems. The results generated by the study prove that it can reduce to the Caputo case by selecting some specific initial values. A careful simulation study is reported to illustrate the effectiveness of the proposed scheme. To exhibit the superiority clearly, the results are compared with that of the published fixed-pole finite model method.  相似文献   

5.
This paper presents a formalization of a fractional order linear system in a higher-order logic (HOL) theorem proving system. Based on the formalization of the Grünwald–Letnikov (GL) definition, we formally specify and verify the linear and superposition properties of fractional order systems. The proof provides a rigor and solid underpinnings for verifying concrete fractional order linear control systems. Our implementation in HOL demonstrates the effectiveness of our approach in practical applications.  相似文献   

6.
This paper gives attention to the issues of output tracking and disturbance rejection performance for a class of fractional order Takagi–Sugeno fuzzy systems in the presence of time-varying delay and unknown external disturbances. More specifically, a new configuration of a fractional order modified repetitive controller that incorporates an improved equivalent-input-disturbance estimator and gain fluctuations in its design is proposed to perform disturbance rejection for the addressed system. By introducing a continuous frequency distributed equivalent model and using the Lyapunov–Krasovskii stability theory, a new set of sufficient conditions ensuring robust asymptotic stability of the resulting closed-loop system is obtained in the framework of linear matrix inequalities. Finally, a numerical example is presented to validate the developed theoretical results, where it is shown that the obtained conditions could force the considered system output to exactly track the given any kind of reference signal by compensating the unknown external disturbance.  相似文献   

7.
This paper presents a new model-free adaptive fractional order control approach for linear time-varying systems. An online algorithm is proposed to determine some frequency characteristics using a selective filtering and to design a fractional PID controller based on the numerical optimization of the frequency-domain criterion. When the system parameters are time-varying, the controller is updated to keep the same desired performances. The main advantage of the proposed approach is that the controller design depends only on the measured input and output signals of the process. The effectiveness of the proposed method is assessed through a numerical example.  相似文献   

8.
This study investigates effects of fractional order perturbation on the robust stability of linear time invariant systems with interval uncertainty. For this propose, a probabilistic stability analysis method based on characteristic root region accommodation in the first Riemann sheet is developed for interval systems. Stability probability distribution is calculated with respect to value of fractional order. Thus, we can figure out the fractional order interval, which makes the system robust stable. Moreover, the dependence of robust stability on the fractional order perturbation is analyzed by calculating the order sensitivity of characteristic polynomials. This probabilistic approach is also used to develop a robust stabilization algorithm based on parametric perturbation strategy. We present numerical examples demonstrating utilization of stability probability distribution in robust stabilization problems of interval uncertain systems.  相似文献   

9.
In this paper, issues related to the identifiability of a fractional order system having its input and output frequency contents are discussed. The effects of the commensurate order α in the identifiability of the model structure and model parameters are analytically studied. It is shown that both identifiabilities (model structure and model parameters) are reduced remarkably for smaller values of α. This phenomenon is observed even though the input signals are rich enough and system belongs to the model set. Our understanding is that the problem arises since differences among different members of the model set fall beyond the practically recognizable precision range. The issue is more problematic when α is smaller and measurements are noisy.  相似文献   

10.
11.
This paper investigates the stability of n-dimensional fractional order nonlinear systems with commensurate order 0 <α<2. By using the Mittag-Leffler function, Laplace transform and the Gronwall–Bellman lemma, one sufficient condition is attained for the local asymptotical stability of a class of fractional order nonlinear systems with order lying in (0, 2). According to this theory, stabilizing a class of fractional order nonlinear systems only need a linear state feedback controller. Simulation results demonstrate the effectiveness of the proposed theory.  相似文献   

12.
This paper investigates the robust stability and stabilization of fractional order linear systems with positive real uncertainty. Firstly, sufficient conditions for the asymptotical stability of such uncertain fractional order systems are presented. Secondly, the existence conditions and design methods of the state feedback controller, static output feedback controller and observer-based controller for asymptotically stabilizing such uncertain fractional order systems are derived. The results are obtained in terms of linear matrix inequalities. Finally, some numerical examples are given to validate the proposed theoretical results.  相似文献   

13.
With power mapping (conformal mapping), stability analyses of fractional order linear time invariant (LTI) systems are carried out by consideration of the root locus of expanded degree integer order polynomials in the principal Riemann sheet. However, it is essential to show the left half plane (LHP) stability analysis of fractional order characteristic polynomials in the s plane in order to close the gap emerging in stability analyses of fractional order and integer order systems. In this study, after briefly discussing the relation between the characteristic root orientations and the system stability, the author presents a methodology to establish principal characteristic polynomials to perform the LHP stability analysis of fractional order systems. The principal characteristic polynomials are formed by factorizing principal characteristic roots. Then, the LHP stability analysis of fractional order systems can be carried out by using the root equivalency of fractional order principal characteristic polynomials. Illustrative examples are presented to explain how to find equivalent roots of fractional order principal characteristic polynomials in order to carry out the LHP stability analyses of fractional order nominal and interval systems.  相似文献   

14.
15.
This study proposes an analytical design method of fractional order proportional integral (FOPI) controllers for first order plus time delay (FOPTD) systems. Suggested technique obtains the general computation equations of controllers for such systems. These equations are used to tune controller parameters to meet specified frequency and phase properties to satisfy the stability of whole system. It is found that the designed controllers not only make the system stable, but also have positive effect on the performance and robustness of the system. Main contribution of the paper lays on this thought. There proposed a concept, “frequency frame” which encloses the curves between phase and gain crossover frequencies in Bode plot. Robustness of the control system can be improved by expanding or constricting the edges of this frame and flattening the curves inside the frame. Thus, any case that leads the system to instability can be avoided. Analytically derived equations are tested with proper examples and the results are shown illustratively. Advantages and disadvantages of the method are comparatively given.  相似文献   

16.
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system.  相似文献   

17.
One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method.  相似文献   

18.
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method.  相似文献   

19.
The paper deals with the robust stability analysis of a Fractional Order Interval Polynomial (FOIP) family. Some new results are presented for testing the Bounded Input Bounded Output (BIBO) stability of dynamical control systems whose characteristic polynomials are fractional order polynomials with interval uncertainty structure. It is shown that the Kharitonov theorem is not applicable for this type of polynomial. A procedure is given for computation of the value set of FOIP. Based on the value set, an algorithm is presented for testing the stability of FOIP. The results presented in the paper are useful for the analysis and design of Fractional Order Interval Control Systems (FOICS). Examples are given to show how the proposed method can be used to assess the effects of parametric variations on the stability in feedback loops with fractional order interval transfer functions.  相似文献   

20.
Extremum-seeking scheme is a powerful adaptive technique to optimize steady-state system performance. In this paper, a novel extremum-seeking scheme for the optimization of nonlinear plants using fractional order calculus is proposed. The fractional order extremum-seeking algorithm only utilizes output measurements of the plant, however, it performs superior in many aspects such as convergence speed and robustness. A detailed stability analysis is given to not only guarantee a faster convergence of the system to an adjustable neighborhood of the optimum but also confirm a better robustness for proposed algorithm. Furthermore, simulation and experimental results demonstrate that the fractional order extremum-seeking scheme for nonlinear systems outperforms the traditional integer order one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号