首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuropeptide calcitonin gene-related peptide (CGRP) may play a role in neurogenic inflammation, tissue remodeling of the uterine cervix, promoting vasodilation, parturition, and processing of sensory information in the spinal cord. CGRP-immunoreactive nerves of the cervix and spinal cord have been studied but cellular identification of the CGRP receptor has received little attention. CGRP-receptor component protein (CGRP-RCP) is a small protein associated with the CGRP receptor; thus, immunostaining for the CGRP-RCP can be used to identify sites of the CGRP receptor. We determined sites of CGRP-RCP immunoreactivity relative to the presence of CGRP-ir nerve fibers in the female rat uterine cervix, spinal cord, and dorsal root ganglia. CGRP-RCP immunoreactivity was expressed in the dorsal horn of the spinal cord, venules of the uterine cervix, and perikarya of sensory neurons in dorsal root ganglia. CGRP-immunoreactive fibers were adjacent to CGRP-RCP-immunoreactive vessels in the cervix and among CGRP-RCP-immunoreactive structures in the dorsal horn of the spinal cord. This suggests CGRP-RCP is associated with structures innervated by CGRP nerves and these interactions may be changed in tissues in response to an appropriate stimulus.  相似文献   

2.
Nerves containing the calcium-binding protein calretinin have been reported in several organs but not in female reproductive organs and associated ganglia. This study was undertaken to determine if nerves associated with the uterus contain calretinin and the source(s) of calretinin-synthesizing nerves in the rat (are they sensory, efferent, or both?). Calretinin-immunoreactive nerves were present in the uterine horns and cervix where they were associated with arteries, uterine smooth muscle, glands, and the epithelium. Calretinin-immunoreactive terminals were apposed to neurons in the paracervical ganglia; in addition, some postganglionic neurons in this ganglion were calretinin positive. Calretinin perikarya were present in the lumbosacral dorsal root ganglia, no-dose ganglia, and lumbosacral spinal cord. Retrograde axonal tracing, utilizing Fluorogold injected into the uterus or paracervical parasympathetic ganglia, revealed calretinin-positive/Fluorogold-labeled neurons in the dorsal root and nodose ganglia. Also, capsaicin treatment substantially reduced the calretinin-positive fibers in the uterus and pelvic ganglia, thus indicating the sensory nature of these fibers. The presence of calretinin immunoreactivity identifies a subset of nerves that are involved in innervation of the pelvic viscera and have origins from lumbosacral dorsal root ganglia and vagal nodose ganglia. Though the exact function of calretinin in these nerves is not currently known, calretinin is likely to play a role in calcium regulation and their function.  相似文献   

3.
The distribution of VIP-immunoreactivity was studied in the spinal cord and dorsal root ganglia of 6 mammalian species. Immunoreactive fibres and cell bodies were most apparent in the dorsal horn, dorsolateral funiculus, intermediolateral cell columns and the area around the central canal. The distribution of VIP immunoreactivity was similar in all species studied, mouse, rat, guinea pig, cat, horse and the marmoset monkey. There were fewer VIP fibres in the dorsal horn of cervical and thoracic segments than in lumbosacral segments. Using radioimmunoassay this gradient increase was quantitatively most marked in the sacral spinal cord of the cat. In dorsal root ganglia few nerve cell bodies but numerous fibres were present. A dual origin for VIP in the spinal cord is suggested: (A) Extrinsic, from dorsal root afferent fibres since immunoreactivity was decreased in dorsally rhizotomized animals (cats and rats) and in capsaicin pretreated rats (microinjection of dorsal root ganglia). (B) From local cell bodies intrinsic to the spinal cord which became visible after colchicine pretreatment of rats.  相似文献   

4.
ATP, an intracellular energy source, is released from cells during tissue stress, damage, or inflammation. The P2X subtype of the ATP receptor is expressed in rat dorsal root ganglion (DRG) cells, spinal cord dorsal horn, and axons in peripheral tissues. ATP binding to P2X receptors on nociceptors generates signals that can be interpreted as pain from damaged tissue. We have hypothesized that tissue stress or damage in the uterine cervix during late pregnancy and parturition can lead to ATP release and sensory signaling via P2X receptors. Consequently, we have examined sensory pathways from the cervix in nonpregnant and pregnant rats for the presence of purinoceptors. Antiserum against the P2X3-receptor subtype showed P2X3- receptor immunoreactivity in axon-like structures of the cervix, in small and medium-sized neurons in the L6/S1 DRG, and in lamina II of the L6/S1 spinal cord segments. Retrograde tracing confirmed the projections of axons of P2X3-receptor-immunoreactive DRG neurons to the cervix. Some P2X3-receptor-positive DRG neurons also expressed estrogen receptor- immunoreactivity and expressed the phosphorylated form of cyclic AMP response-element-binding protein at parturition. Western blots showed a trend toward increases of P2X3-receptor protein between pregnancy (day 10) and parturition (day 22–23) in the cervix, but no significant changes in the DRG or spinal cord. Since serum estrogen rises over pregnancy, estrogen may influence purinoceptors in these DRG neurons. We suggest that receptors responsive to ATP are expressed in uterine cervical afferent nerves that transmit sensory information to the spinal cord at parturition.  相似文献   

5.
本研究应用乙醛酸诱发儿茶酚胺(CA)荧光技术观察大鼠肾上腺素(NA)能神经在脊神经节内的分布;并应用HRP顺、逆行追踪技术对脊神经节内NA能神经纤维的起源及其与脊神经节神经元的关系进行了探讨。荧光组织化学观察发现、有些神经节神经元胞体周围分布有带膨体的NA能神经末梢;有的紧密围绕脊神经节细胞——卫星细胞复合体。颈上交感神经节内注射霍乱毒素B亚单位结合HRP(CB┐HRP),在同侧C3~6节段脊神经节内可见标记的点状纤维末梢紧邻于节细胞旁。T11~L2节段脊神经节内注射HRP后,在同侧椎旁交感链(T9~L1)内可见标记的交感节后神经元胞体。上述实验结果表明,交感节后神经元发出节后纤维可直接到达脊神经节内,与节细胞发生接触。本研究提示、交感神经在脊神经节水平可能参与躯体初级传入信息的调制  相似文献   

6.
H P Too  J E Maggio 《Peptides》1991,12(3):431-443
Specific antisera directed against substance P and neuromedin K (neurokinin B) have been used in double-label immunofluorescence studies to unambiguously localize these two neuropeptides of the tachykinin family in single tissue sections of rat spinal cord and dorsal root ganglia. Substance P-like immunoreactivity (SPLI) is present but neuromedin K-like immunoreactivity (NMKLI) is undetectable in dorsal root ganglia. Both peptides are present in the spinal cord, but NMKLI is largely restricted to the dorsal gray while SPLI shows a broader distribution. In the spinal gray, NMKLI coexists with SPLI in some, but not all, fibers. While substance P in the dorsal spinal cord is largely of primary afferent origin, neuromedin K appears to originate largely from intrinsic spinal neurons.  相似文献   

7.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

8.
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of estrogen on this expression using immunohistochemistry, radioimmunoassay and RT-PCR. PACAP immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 182,780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.  相似文献   

9.
Neuropeptide Y (NPY) was immunohistochemically investigated in the frog spinal cord and dorsal root ganglia after axotomy. In normal ganglia, moderate NPY-like immunoreactivity (NPY-IR) prevailed in large and medium cells. In the spinal cord, the NPY-IR was densest in the dorsal part of the lateral funiculus. Other fibers and neurons NPY-IR were observed in the dorsal and ventral terminal fields and mediolateral band. NPY-IR fibers were also found in the ventral horn and in the ventral and lateral funiculi. The sciatic nerve transection increased the NPY-IR in large and medium neurons of the ipsilateral and contralateral dorsal root ganglia at 3 and 7 days, but no clear change was found at 15 days. In the spinal cord, there was a bilateral increase in the NPY-IR of the dorsal part of the lateral funiculus. In the ipsilateral side, the NPY-IR was increased at 3 and 7 days but was decreased at 15 days. In the contralateral side, a significant reduction at 15 days occurred. These findings seem to favor the role of NPY in the modulation of pain-related information in frogs, suggesting that this role of NPY may have appeared early in vertebrate evolution.  相似文献   

10.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I-II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I-III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I-II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

11.
12.
The presence of calcitonin-gene related peptide (CGRP)-like immunoreactivity (-LI) in sensory neurons was established by immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-immunoreactive (-IR) nerve fibres were present in many peripheral organs including heart, ureter, uterus and gall bladder of guinea-pig and man. The distribution of CGRP-IR nerves in the dorsal horn of the spinal cord, of positive cell bodies in thoracic spinal and nodose ganglia and nerves in peripheral organs was closely related to that of substance P-LI. Double staining experiments revealed that in most cases peripheral CGRP-IR nerve terminals also contained SP-LI. However, different localization of SP- and CGRP-IR neurons was observed in the nucleus of the solitary tract as well as in the ventral horn of the spinal cord. In the heart, CGRP-IR nerves were associated with myocardial cells (mainly atria), coronary vessels, local parasympathetic ganglia as well as with the epi- and endocardia. Three to 4-fold higher levels of native CGRP-LI were observed in the atria than in the ventricles of the heart. HPLC analysis revealed that the major peak of CGRP-LI in the heart of rat and man had the same retention times as the synthetic equivalents. Systemic capsaicin pretreatment and adult guinea-pigs caused a loss of CGRP-IR terminals in the dorsal horn of the spinal cord as well as in peripheral organs including the heart. After capsaicin treatment, the content of CGRP-IR was reduced by 70% in the heart and by 60% in the dorsal part of the spinal cord. In superfusion experiments with slices from the rat spinal cord, a release of CGRP-LI was induced by 60 mM K+ and 3 microM capsaicin in a calcium-dependent manner.  相似文献   

13.
Of the free amino acids found in extracts of cat spinal roots, dorsal root ganglia and peripheral nerves, only glutamate was present in disproportionately high concentrations in those parts of the dorsal roots between ganglia and spinal cord. This distribution suggests that the high dorsal root levels of glutamate may result from synthesis in dorsal root ganglia and subsequent transport towards the spinal cord. Four excitant amino acids were detected in the extracts: aspartate, cysteate, cysteine sulphinate and glutamate. The unique regional distribution of glutamate is consistent with the proposed role of this amino acid as an excitatory transmitter at the terminals of primary afferent fibres.  相似文献   

14.
All parts of the internal female reproductive tract of the rat contained nerve fibers with immunocytochemically visible gastrin-releasing peptide (GRP)-like material. GRP-like immunoreactivity was also seen in nerve cell bodies of the paracervical ganglion formation, which in addition, harboured GRP nerve fibers. Pharmacological experiments were performed on isolated uterine and cervical smooth muscle tissue from two groups of spayed animals, one of which received estradiol. Both GRP and its non-mammalian counterpart, bombesin, evoked concentration-dependent clonic contractions in uterus and cervix, most pronounced in the estrogen-treated animals. Bombesin induced a stronger contractile force than GRP. The responses were not affected by tetrodotoxin. The observations suggest that GRP may be one of several neural messengers involved in the control of uterine motor activity.  相似文献   

15.
It has been shown that in the chick dorsal root ganglion (DRG) about 8% of neurons, belonging to both the A and B classes of sensory neurons exhibit a clear dopamine immunoreactivity. In the present study are reported the results of measurements, by mean of HPLC-electrochemical detection (HPLC-ED), of DA and of the DA metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the rat DRG and their central nerves. Very low levels of DA, about 10 folds lower than the levels found in the dorsal horn of the spinal cord, were found in the DRG. However the levels of DOPAC and HVA were approximately equivalent to the levels found in the cord. The immunocytochemical study performed in parallel has shown that some dopaminergic-immunoreactive fibers in the DRG are located around the blood vessels. Few dopamine-immunoreactive sensory neurons were identified in the DRG and immunoreactive fibers, not linked to blood vessels, were identified in the dorsal root nerves. The present work indicates that there is a dopaminergic innervation of the blood vessels in the rat DRG but that dopamine may also be, as in the chick, a transmitter of primary afferent fibers.  相似文献   

16.
Summary Axonal tracing techniques were used in combination with immunohistochemistry to examine the distribution of neuropeptides in afferent pathways from the uterine cervix of the cat. Primary afferent neurons innervating the uterine cervix were identified by axonal transport of the dye, fast blue, injected into the cervix. Fifteen to twenty-five days after the injection, dorsal root ganglia (L1–S3) were removed and incubated for 48–72 h in culture medium containing colchicine to increase the levels of peptides. Calcitonin gene-related peptide (CGRP), cholecystokinin (CCK), leucine-enkephalin (LENK), somatostatin, substance P and vasoactive intenstinal polypeptide (VIP) were identified by use of indirect immunohistochemical techniques. Eighty-four percent of uterine cervix afferent neurons were identified in the sacral dorsal root ganglia (S1–S3), and 16% in the middle lumbar dorsal root ganglia (L3–L4). In sacral dorsal root ganglia, VIP was present in the highest percentage of dye-labeled cells (71%), CGRP in 42%, and substance P in 18% of the cells. CCK and LENK were present in 13% of the cells. In lumbar dorsal root ganglia, CGRP (51%) was most prominent peptide followed by VIP (34%), substance P (28%), LENK (17%) and CCK (13%). Somatostatin was present in the ganglia but did not occur in dye-labeled neurons. In conclusion, the uterine cervix of the cat receives a prominent VIP-and CGRP-containing afferent innervation. The percentage of neurons containing VIP is three to five times higher than the percentage of these neurons in afferent pathways to other pelvic organs. These observations coupled with the results of physiological studies suggest that VIP is an important transmitter in afferent pathways from the cervix.  相似文献   

17.
Nitric oxide (NO) is synthesized in neurons and is a potent relaxor of vascular and nonvascular smooth muscle. The uterus contains abundant NO-synthesizing nerves which could be autonomic and/or sensory. This study was undertaken to determine: 1) the source(s) of NO-synthesizing nerves in the rat uterus and 2) what other neuropeptides or transmitter markers might coexist with NO in these nerves. Retrograde axonal tracing, utilizing Fluorogold injected into the uterine cervix, was employed for identifying sources of uterine-projecting neurons. NO-synthesizing nerves were visualized by staining for nicotinamide adenine dinucleotide phosphate (reduced)-diaphorase (NADPH-d) and immunostaining with an antibody against neuronal/type I NO synthase (NOS). NADPH-d-positive perikarya and terminal fibers were NOS-immunoreactive (-I). Some NOS-I/NADPH-d-positive nerves in the uterus are parasympathetic and originate from neurons in the pelvic paracervical ganglia (PG) and some are sensory and originate from neurons in thoracic, lumbar, and sacral dorsal root ganglia. No evidence for NOS-I/NADPH-d-positive sympathetic nerves in the uterus was obtained. Furthermore, double immunostaining revealed that in parasympathetic neurons, NO-I/NADPH-d-reactivity coexists with vasoactive intestinal polypeptide, neuropeptide Y, and acetylcholinesterase and in sensory nerves, NOS-I/NADPH-d-reactivity coexists with calcitonin generelated peptide and substance P. In addition, tyrosine hydroxylase(TH)-I neurons of the PG do not contain NOS-I/NADPH-d-reactivity, but some TH-I neurons are apposed by NOS-I varicosities. These results suggest NO-synthesizing nerves in the uterus are autonomic and sensory, and could play significant roles, possibly in conjunction with other putative transmitter agents, in the control of uterine myometrium and vasculature.  相似文献   

18.
Martin-Schild, S., J. E. Zadina, A. A. Gerall, S. Vigh and A. J. Kastin. Localization of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. Peptides 18(10) 1641–1649, 1997.—Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are endogenous ligands that have greater affinity and selectivity for the μ-opiate receptor than any other known mammalian peptide. A polyclonal antiserum, screened for specificity to endomorphin-2 by immunodot-blot assay and preabsorption controls, was used for localization of this peptide. Immunocytochemistry performed on the brainstem, spinal cord, and sensory ganglia of rats by the avidin–biotin–peroxidase method revealed a continuous dense aggregation of endomorphin-2-like immunoreactive varicose fibers in the superficial laminae of the dorsal horn of the medulla and spinal cord. Immunoreactive fibers were detected in the dorsal root as well as within the dorsal root ganglia. The results suggest that endomorphin-2 is synthesized in primary sensory neurons in ganglia, transported to the superficial dorsal horn, and released near neurons expressing μ receptors. Its distribution appears to represent a functional unit likely to be associated with modulation of nociceptive stimuli.  相似文献   

19.
Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallel decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

20.
Summary Location, distribution and density of nerve fibers immunoreactive to neuropeptide tyrosine, vasoactive intestinal polypeptide and substance P were studied in the reproductive tract of the female rat and compared with acetylcholinesterase-positive (cholinergic) and noradrenergic nerves. Plexuses of all types of fibers were present in the vagina, uterine cervix, uterine horn and oviduct. In the tubular reproductive organs all of these types of nerve fibers appeared to innervate vascular and non-vascular smooth muscle and nearly all types of fibers formed plexuses subjacent to the epithelium lining the organs. Individual fibers of all classes appeared to innervate fascicles of smooth muscle in the mesometrium of the uterine horn. A few acetylcholinesterase-positive and substance P-immunoreactive fibers were present in the ovary but no vasoactive intestinal polypeptide-immunoreactive nerves were observed. Noradrenergic and neuropeptide tyrosine-immunoreactive nerves were numerous in the ovary where they were seen in the interstitial gland tissue and associated with follicles and blood vessels. It is suggested that these nerves may influence hemodynamic events and non-vascular smooth muscle in such functions as transport of sperm and ova and parturition. Substance P-immunoreactive nerve fibers are likely to be sensory fibers that could have roles in neurohormonal reflexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号