首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
沥青基炭/炭复合材料的弯曲断裂特征   总被引:14,自引:7,他引:7  
以1KPAN基高强度炭纤维为增强体、以调制中温煤沥青为基体前躯体,采用压力浸渍-炭化工艺制备出了不同密度二维沥青基炭/炭复合材料。经过对复合材料试样进行的弯曲试验表明,其弯曲断裂特征与材料密度具有密切的联系。根据弯曲强度-位移曲线,高密度复合材料表现为脆性断裂,而低密度复合材料表现为韧性断裂。从弯曲断面的SEM图片来看,脆性断裂时的断面比较平整,韧性断裂时断面上有大量炭纤维拔出。炭/炭复合材料的断裂破坏过程实质上就是基体裂纹在材料内的扩展过程,其扩展的途径与界面结合状况有关。裂纹沿界面的扩展将引起基体与纤维的脱粘,脱粘又导致纤维与基体之间的相对滑动,这种相对滑动将吸收相当一部分能量,从而可以延缓材料的断裂过程,起到韧化作用。  相似文献   

2.
采用三点弯曲方法测试了压力梯度化学气相浸渗法(CVI)工艺制备的2D炭/炭复合材料的性能,借助于扫描电镜研究了断口和界面形貌,分析了密度和纤维基体界面对材料力学性能的影响。结果表明,随试样密度增加,2D炭/炭复合材料的断裂模式从剪切断裂、层问分离向拉伸断裂转变。材料密度对弯曲强度和模量影响很大,但对弯曲挠度基本没有影响。揭示了影响2D炭/炭复合材料弯曲挠度的关键因素是纤维与热解炭基体界面的结合情况。  相似文献   

3.
准三维炭/炭复合材料力学性能分析   总被引:1,自引:0,他引:1  
以针刺网胎无纬布交替叠层准三维结构为预制体,采用热梯度化学气相沉积(TCVI)和树脂压力浸渍-炭化(PIC)混合致密方法得到不同密度的炭/炭复合材料,研究了密度和热处理温度对炭/炭复合材料弯曲和压缩性能的影响,并对其机理进行了探讨。结果表明:增大材料的密度可以提高材料的弯曲和压缩性能,破坏机理发生改变,密度较低时,弯曲破坏方式为“假塑性”的分层破坏模式,压缩破坏为压溃式破坏;高密度的试样,弯曲破坏为拉应力或压应力破坏模式,压缩破坏为剪切和分层破坏模式,表现出一定的脆性;热处理温度升高,降低了材料的弯曲和压缩强度或模量,但明显改变了材料的破坏模式,增多了裂纹扩展或偏转的途径,表现出更好的“假塑性”;由分析得出,准三维炭/炭复合材料承压时,针刺处是力学薄弱点,易产生分层。  相似文献   

4.
纤维含量和热处理对炭/炭复合材料性能的影响   总被引:3,自引:1,他引:2  
研究了炭纤维体积分数和预制体热处理温度对炭/炭复合材料力学性能的影响.结果表明,随着预制体中炭纤维体积分数的增加炭/炭复合材料的硬度逐渐增加,但当炭纤维的体积分数大于30%时,炭/炭复合材料硬度增加的幅度减小.炭纤维体积分数的增加对炭/炭复合材料硬度的影响有两个相反的作用,纤维的增强作用将使硬度增大,而孔隙率的增加将导致硬度的减小.炭/炭复合材料的抗弯强度随着纤维体积分数的增加而增加,但因纤维体积分数的增加会导致孔隙减小.致使热解炭不能充分地渗透填充到纤维间的孔隙内,抗弯强度下降,所以随着纤维体积分数的增加,材料的弯曲强度会出现拐点.随着预制体热处理温度的不同,炭/炭复合材料有脆性断裂、整束纤维拔出的假塑性断裂和部分炭纤维拔出的假塑性断裂三种断裂机制.  相似文献   

5.
微观结构对中间相沥青基炭/炭复合材料力学性能的影响   总被引:4,自引:0,他引:4  
借助偏光显微镜、扫描电镜、透射电镜以及力学性能测试研究了微观结构对中间相沥青基炭/炭复合材料力学性能的影响. 结果表明: 基体炭在偏光显微镜下呈现出光学各向异性, 在SEM和TEM下呈片层条带状结构. 基体炭与纤维之间的界面不连续, 为“裂纹型”界面. 材料受载破坏时裂纹通过改变扩展路径而延缓其扩展速度, 在纤维-基体界面处以及基体炭层片之间引起滑移, 在断口形貌上体现出断裂台阶适中且与纤维拔出交替进行, 表现出韧性破坏的断裂特征. 材料具有较高的力学性能, 抗弯强度达到257MPa, 断裂韧性达到11.4MPa·m 1/2.  相似文献   

6.
热处理温度对热解炭及炭/炭复合材料力学性能的影响   总被引:3,自引:0,他引:3  
以丙烷为气源,采用等温等压化学气相渗透技术制备了炭/炭复合材料,利用X射线衍射、偏光显微镜、扫描电镜、纳米压痕仪、三点弯曲法研究了热处理温度对热解炭以及炭/炭复合材料微观结构和力学性能的影响.微观结构观察显示随着热处理温度的升高,热解炭层间距减小,同时石墨化度提高;由于发生了局部应力石墨化,热解炭出现同心微裂纹,并且随热处理温度的升高裂纹的数量和宽度增加.纳米压痕测试表明,热解炭的纳米压痕行为是完全的弹性形变,完全卸载后热解炭表面没有残余压痕,但加载和卸载曲线没有重合而是存在一定的能量耗散,随着热处理温度的升高,热解炭的弹性模量增大.热处理后纤维强度降低,并且纤维与基体炭界面脱离,导致炭/炭复合材料的弯曲强度和模量下降.  相似文献   

7.
借助偏光显微镜、扫描电镜,透射电镜以及力学性能测试研究了微观结构对双基体炭/炭复合材料力学性能的影响.结果表明:基体炭在偏光显微镜下呈现光学各向异性,材料内部形成多层次的界面结构,热解炭呈现"皱褶状"片层结构,中间相沥青炭呈现片层条带状结构,基体炭片层的走向基本上平行于纤维轴向.材料受载破坏时裂纹通过改变扩展路径而延缓其扩展速度,在纤维-基体界面处以及基体炭片层之间引起滑移,在断口形貌上体现出锯齿状的断裂形式,材料具有韧性断裂的特征,抗弯强度最高可达223MPa.  相似文献   

8.
对二维炭/炭(2D C/C)复合材料在700 ℃~1 300 ℃温度范围内的微氧化(氧化失重率小于6 %)行为进行了研究,并采用SEM和千分尺等仪器考察了氧化前后C/C复合材料的组织结构和宏观尺度的变化,分析了微氧化对材料组织结构及试样宏观尺度(即试样的体积)的影响规律.结果表明:在700 ℃~1300 ℃温度范围内,2D C/C复合材料的微氧化行为服从线性规律,且氧化速率随温度的升高而增大.同时,随温度的升高,微氧化区域由材料的表面层区和近表面层区向材料的外表面和表面层区集中,微氧化程度加剧,而微氧化深度减小;宏观表现为试样表面处的纤维/基体界面分离明显化和纤维端头的锐化,以及C/C复合材料的体积下降.  相似文献   

9.
以高导热沥青基炭纤维布为增强体,中间相沥青为黏结剂,采用热模压成型及液相浸渍裂解工艺增密,并经高温石墨化处理制备二维高导热炭/炭复合材料。利用X射线衍射仪和透射电子显微镜对经不同温度处理后的沥青基炭纤维及二维高导热炭/炭复合材料的结构和形貌变化进行表征,并考察石墨化处理温度对复合材料热导率的影响。结果表明,随着热处理温度的升高,纤维及复合材料内部石墨微晶尺寸增大、取向度变好,纤维与基体间界面结合紧密、裂纹减少,而基体碳层间裂纹则呈扩大趋势。此外,二维高导热炭/炭复合材料的热导率随热处理温度的升高而线性增加,经3 000℃处理后,材料热导率高达443 W/m·K。  相似文献   

10.
张波  贺平照  肖春  周绍建 《材料导报》2017,31(Z1):351-354
采用化学气相沉积、沥青浸渍-高压碳化混合致密工艺向径棒法编织的预制体内引入基体碳,实现高密度(≥1.94g/cm3)炭/炭复合材料制备。利用快速通电加热测试技术,模拟C/C复合材料的高温工作环境,研究不同温度下材料的环向拉伸性能。结果表明:在2 300℃时,材料拉伸强度最大(80.3 MPa),断裂应变随着温度的升高而增加。采用扫描电镜对试样及断口形貌进行观察,发现测试温度、机加损伤及试样过渡区应力集中影响材料断裂特征。温度为1 800℃、2 300℃时材料在过渡区断裂;温度为2 800℃时,材料在标距区发生破坏,纤维与基体界面结合强度低,纤维拔出多,表现出假塑性断裂特征。  相似文献   

11.
利用有限元热分析软件仿真了三种不同基体炭结构的炭/炭复合材料在制动过程中瞬态温度场,并通过模拟制动试验进行了验证,对比仿真计算结果与实验测试结果表明:三种样品的温度场仿真结果与实验结果基本吻合,在轴向方向存在明显的温度梯度,具有树脂炭基体的样品的温度场变化与具有粗糙层热解炭基体的样品类似,但树脂炭基体的样品的最高温度及温度梯度大于粗糙层热解炭基体的样品,而光滑层热解炭基体的样品在刹车过程中的最高温度均低于粗糙层热解炭和树脂炭基体的样品,达到最高温度的速度远远落后于前两种样品,且其温度梯度最小.炭/炭复合材料在制动过程中的瞬态温度场分布与材料的摩擦磨损性能及热传导性能密切相关,制动功率大会导致材料的摩擦表面温升高,达到最高温度的时间缩短;材料的导热性能好会导致热量的传递速度加快,使温度梯度减小.  相似文献   

12.
采用CVI涂层和400℃空气氧化技术对炭纤维进行表面处理,借助偏光显微镜(PLM)、扫描电镜(SEM)和弯曲性能测试研究了炭纤维表面处理对2D中间相沥青基炭/炭复合材料的组织结构与弯曲性能的影响.结果表明:两种表面处理的材料均具有韧性断裂特征,CVI涂层表面处理后材料的"假塑性效应"更为显著,但是其抗弯强度较低,基体炭的组织结构为具有光学活性的热解炭和中间相沥青炭的流线型、广域流线型组织,材料内部形成多层次的界面结构,在断裂破坏过程中,主要发生基体内聚破坏;400℃空气氧化表面处理的材料的基体炭的组织结构为中间相沥青炭的小域、广域流线型组织,材料在断裂破坏过程中,表现为混合破坏,即基体内聚破坏和界面粘结破坏同时发生.  相似文献   

13.
通过引入225℃空气氧化处理,在较短周期内采用常压浸渍炭化工艺制备了中间相沥青基炭/炭复合材料.采用偏光显微镜、万能力学试验机及扫描电镜等检测手段研究了炭/炭复合材料微观组织和弯曲力学性能.研究结果表明,225℃空气氧化处理后,炭化收率显著提高,经过四次常压浸渍-炭化循环后炭/炭复合材料密度达到了1.73g/cm3,弯曲强度为152.39MPa,比未经过空气氧化处理的试样提高了62.87%.空气氧化处理制备的试样呈现典型的假塑性断裂特征,而未经空气氧化处理制备的试样主要从层间断裂,其弯曲强度较低.通过偏光显微分析,未经空气氧化处理的炭/炭复合材料组织大部分为小域组织,只有少量的镶嵌型组织和广域组织,而经过225℃空气氧化处理后的试样,以广域型组织为主,并在其间夹着流线型组织和小域组织.  相似文献   

14.
脉冲FCVI制备炭/炭复合材料的微观结构及力学性能   总被引:3,自引:2,他引:3  
采用脉冲强制流动热梯度化学气相渗透(IFCVI)法制备了毡基炭/炭复合材料。借助偏光显微镜及扫描电子显微镜观察了基体热解炭的微观组织结构及断口形貌特征;用弯曲实验测定了材料的力学性能。结果表明:采用脉冲FCVI,经1000℃~1250℃,100h致密化,2300℃热处理后,炭/炭复合材料的密度可达1.7g/cm^3,弯曲强度为125.4MPa,挠度为0.61mm。该工艺致密化速率快,所制备材料的密度分布均匀、力学性能好。研究表明,温度是影响材料组织结构的主要因素,高温条件下有利于粗糙层热解炭组织的生成,而低温有利于光滑层热解炭组织的生成,一般因沉积环境复杂多变,常得到混合型组织。  相似文献   

15.
以磷酸、B4C、SiC和Al2O3粉料为原料, 采用一种新颖的水热法对炭/炭(C/C)复合材料基体进行了抗氧化改性. 重点研究了水热反应温度对改性试样的物相组成、微观结构及抗氧化性能的影响. 采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱仪(EDS)及X射线光电子能谱(XPS)对改性后试样进行了表征. 结果表明:经过水热改性处理, 炭/炭复合材料表面缺陷被玻璃相B2O3、HPO3和微晶Al(PO3)3所组成的涂层所覆盖, 材料的抗氧化性能明显提高; 抗氧化性能在120~200℃范围内随着水热改性温度的升高而提高; 在200℃水热改性后的炭/炭复合材料在700℃的空气中氧化10h后的质量损失仅为2.31%.  相似文献   

16.
高压浸渍-炭化制备炭/炭复合材料的组织结构   总被引:1,自引:1,他引:0  
为研究高压浸渍-炭化制备的炭/炭复合材料的组织结构,以1 K PAN基高强度炭纤维为增强体,以调制中温煤沥青为基体前驱体,采用超高压浸渍-炭化工艺制备出2.5D沥青基炭/炭复合材料.采用偏光显微镜及SEM电镜对材料内部的组织形态进行了观察.研究表明:以中温沥青为基体前驱体所制备的炭/炭复合材料,在纤维束内,由于纤维之间的孔隙较小,形成的基体组织主要为镶嵌组织;而在纤维束之间,由于空间较大,出现的基体组织既有镶嵌型组织,也有域型组织.在沥青基炭基体中,有孔洞、裂纹、沟槽等缺陷.  相似文献   

17.
将M40J碳纤维(Cf)以叠层缝合结构编织成预制体,采用真空气压浸渗工艺制备成Cf/Al复合材料。在高温环境(350℃、400℃)下进行三点弯曲测试试验,通过SEM、TEM、EDS和XRD对材料的元素分布、物相组成、微观组织和界面特征进行观察分析,研究其高温弯曲性能,探讨该种材料在高温环境下弯曲失效机制。结果表明,制备的Cf/Al复合材料基体与增强体界面轮廓清晰且结合紧密,材料内部基体受残余拉应力。Cf/Al复合材料在350℃时的弯曲强度和模量分别为175.2 MPa和90.1 GPa,在400℃时为160.8 MPa和87.5 GPa;温度升高时叠层缝合结构Cf/Al复合材料的弯曲强度未出现大比例下降,其高温稳定性较其他编织结构更好。Cf/Al复合材料在高温环境下弯曲失效时受拉伸、压缩共同作用,其失效方式是基体开裂及部分纤维断裂,主导因素为基体在高温下软化和材料界面结合强度下降。   相似文献   

18.
炭/炭复合材料高温力学行为研究   总被引:28,自引:12,他引:16  
借助三点弯曲试验和扫描电镜观察,对层压结构C C(2D)、三维整体编织结构C C(3D)在高温1700℃及室温下的弯曲力学行为进行了研究,总结了各自性能及损伤破坏的特点。试验结果表明:3DC C以纤维断裂的形式发生弯曲破坏,其弯曲强度、模量均远大于2DC C;对于2DC C,其弯曲破坏模式为基体的层间开裂,材料性能在很大程度上受到炭基体以及界面状态的控制;C C复合材料在高温下弯曲力学性能大幅提高,强度增加幅度高达45%以上,模量增加幅度达15.3%;高温下界面粘结强度增加,导致3DC C的损伤破坏模式有所变化。  相似文献   

19.
采用液相浸渍-炭化和CVI复合工艺, 制备出在炭纤维和热解炭之间具有中间相沥青过渡层的炭/炭复合材料, 借助偏光显微镜、扫描电镜、透射电镜以及力学性能测试研究了所制备的炭/炭复合材料的微观结构与力学性能. 结果表明: 在偏光显微镜下中间相沥青炭的光学活性高于热解炭的光学活性, 中间相沥青炭在SEM和TEM下均呈片层条带状结构, 热解炭在SEM下呈“皱褶状”片层结构, 在TEM下为粒状结构; 在HRTEM下, 中间相沥青炭、热解炭和炭纤维的晶化程度依次降低. 在加载过程中, 材料内部多层次的界面通过改变裂纹扩展路径而延缓其扩展速度, 在断口形貌上体现出锯齿状的断裂形式, 纤维拔出长度适中, 材料表现出韧性破坏的断裂特征. 材料具有较高的力学性能, 抗弯强度达到244MPa, 断裂韧性达到9.7MPa·m1/2.  相似文献   

20.
选取膨润土作为陶瓷基体,以鳞片石墨、预处理石墨及炭黑作为导电原料,碳化硅作为增强原料,经球磨混合、50MPa模压成型和1000℃热处理3h后制备出炭/陶复合电热材料。采用XRD和SEM对其物相组成和微观形貌进行表征,并对其通电发热性能、力学性能和抗氧化性能进行了测试和分析。所制备的炭/陶复合材料具有优异的电热性能,在交流低电压(10V)下即可迅速升温,并在较高温度下保持相对稳定,研制的样品中最高发热温度可达643℃。通过调整碳化硅含量,复合材料抗弯强度可达14.3MPa。通过将炭材料和陶瓷材料复合,可有效改善炭材料的抗氧化性,使其明显氧化失重温度升高200℃左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号