首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
为满足不断增加的酸性压裂液应用需求,以氯代丙二酸钠为醚化剂合成了取代度(DS)分别为0.08, 0.11, 0.18的双羧基甲基取代瓜尔胶,考察了由该类瓜尔胶制备的酸性压裂液体系的性能。结果表明:DS对基液增稠速率没有明显影响;DS为0.08的增稠剂制备的冻胶交联密度不足,无法形成有效交联;DS为0.11的增稠剂制备的冻胶能挑挂、能吐舌;DS为0.18的增稠剂制备的冻胶弹性差、易碎。采用DS为0.11的增稠剂,随使用浓度增加,冻胶微观网络变得更加致密。0.40%,0.50%浓度制备的冻胶能够满足90℃,170 s-1耐温耐剪切要求。300μg/g破胶剂加量下,1 h即可彻底破胶,破胶液表面张力26.1 mN/m,与煤油的界面张力0.51 mN/m,残渣含量186 mg/L,满足压裂液破胶要求。  相似文献   

2.
CJ2-3型可回收低分子量瓜尔胶压裂液的开发   总被引:3,自引:1,他引:2  
低分子量瓜尔胶CJ2-3分子链上引入了亲水基团,水溶性好,水溶液30℃[η]值0.842 L/g,按3组K,α求得分子量3.86×105~5.93×105。CJ2-3压裂液以硼酸盐作交联剂,交联剂用量大于常规瓜尔胶类压裂液。0.35%压裂液基液在pH=8.5时黏度仅12 mPa.s,形成的压裂液在热剪切测试中(170 s-1)黏度几乎立即产生,温度达到设定值后黏度保持不变,且60℃、70℃黏度相差不大(在100 mPa.s上下),即该压裂液流变曲线变化平稳,温度敏感性小,易控制,携砂能力强,压裂施工设计难度较小。加入破胶剂(过硫酸铵)可使该压裂液破胶,破胶液黏度符合返排要求。室内模拟破胶实验结果表明,压裂施工完成后,CJ2-3压裂液与低pH值的支撑裂缝表面接触时pH值下降,pH≤8.0时破胶,破胶液黏度接近基液,其中的CJ2-3不发生降解。CJ2-3压裂液滤失控制性能好,滤失量小,滤饼可在地层中自行破胶,易清除。长庆油田的3口油井用CJ2-3压裂液压裂,未加破胶剂的1口井,压裂液返排率达92.9%,返排压裂液在30℃放置7天,黏度下降30.8%。返排压裂液中补加各种添加剂得到的回收压裂液,流变性和其他性能与原始压裂液一致。图5表8参4。  相似文献   

3.
羧甲基羟丙基瓜尔胶压裂液的高温性能评价   总被引:1,自引:0,他引:1  
评价了羧甲基羟丙基瓜尔胶(CMHPG)压裂液在90~180℃的流变性与伤害特征。该稠化剂水不溶物含量低于1.1%,用于180℃储层的加量为0.60%,基液黏度88.6 mPa.s,交联液在170 1/s剪切100 min后的黏度大于50 mPa.s。0.25%交联液100℃时的储能模量为2.451 Pa,大于0.50%羟丙基瓜尔胶(HPG)交联液的0.7265Pa。CMHPG交联液在低破胶剂浓度下即可快速破胶水化,残渣含量为194~225 mg/L,不到HPG的1/2。CMHPG和HPG交联液对储层岩心的伤害率分别为39.8%、52.3%。CMHPG交联液悬砂性能良好。在排量2~6 m3/min时,0.45%CMHPG压裂液基液(用于150℃高温深井)的摩阻系数与0.30%HPG基液(用于70℃地层)相当。与HPG压裂液相比,CMHPG压裂液具有高弹性、高悬砂性及低稠化剂使用浓度、低基液黏度、低伤害、低摩阻的"二高四低"性能。图5表8参4  相似文献   

4.
为有效控制和降低压裂液对储层的伤害,进一步提高压裂液效果,降低压裂成本,开发了满足低渗透储层压裂需要的低质量分数、低残渣、低伤害的胍胶压裂液体系。该压裂液体系胍胶浓度为0.35%,交联剂用量为0.50%,破胶后残渣为144 mg/L,破胶剂用量为0.008%,破胶时间为3 h,与常规胍胶体系相比破胶残渣下降率为51.52%,起泡剂、黏土稳定剂、助排剂用量均为0.50%,温度稳定剂为0.10%。流变等研究分析结果表明该体系具有良好的抗温抗剪切能力,当温度达到140℃时黏度大于100 m Pa·s,在170 s~(-1)剪切90 min后黏度大于80 m Pa·s。通过对岩心伤害率与静态滤失进行研究发现伤害率下降均大于50%,静态滤失较小,有利于降低对储层的伤害。  相似文献   

5.
用于压裂液的生物酶破胶剂性能评价   总被引:1,自引:0,他引:1  
生物酶破胶剂具有破胶彻底、残渣量少、对地层的伤害小等优点。介绍了适用于高、中高、低温条件的3种生物酶破胶剂,通过室内实验,对生物酶的配伍性、生物酶浓度、瓜胶浓度、pH值、温度等条件对酶活性及破胶效果的影响进行了评价。结果表明,该3种生物酶与压裂液添加剂的配伍性好;酶浓度在5~20mg/L、瓜胶浓度在0.2%~1.0%范围内时具有很好的破胶效果;生物酶破胶剂在pH值为5~10、温度为20~120℃范围内,3h可将压裂液黏度降低到5mPa·s以下,达到行业标准;与化学破胶剂相比,生物酶破胶剂用于压裂液,不仅破胶可控,而且破胶后破胶液黏度低、破胶聚合物分子量小、残渣含量少,环境保护性能好。  相似文献   

6.
硼交联羟丙基瓜尔胶压裂液回收再用可行性研究   总被引:5,自引:0,他引:5  
庄照锋  张士诚  张劲  马新仿  秦钰铭 《油田化学》2006,23(2):120-123,135
探讨了羟丙基瓜尔胶/硼冻胶压裂液回收再用的可行性。分析了该压裂液冻胶在无通用破胶剂情况下的非降解性破胶机理,控制因素为pH值和温度,破胶液黏度最低可达基液水平。基于一种有机硼交联HPG冻胶压裂液的实验数据及文献资料,讨论了升温,使用缓释酸及稀释3种非降解性破胶方法。①根据压裂过程中裂缝附近温度场分布设计压裂液,携砂液耐温性只需达到裂缝内的较低温度,地层温度恢复后其黏度将大幅降低;使用产气生热剂可提高裂缝温度。②加入设定量未指明组成的缓释酸使实验压裂液120℃黏度降至<40 mPa.s,补加NaOH后黏度维持>200 mPa.s近3小时。③压裂液与地层水等量混合后破胶,黏度~20 mPa.s,复合清水压裂工艺即基于此原理。不同泵注阶段示踪剂产出曲线表明,影响压裂液返排的因素不只是黏度,某些未破胶压裂液的返排率反而很高;如使用方法适当,缓释酸破胶的返排率可以达到通用氧化型破胶剂破胶的相同水平。国外实践表明,重复使用低分子量瓜尔胶压裂液可提高压裂效果。图7参9。  相似文献   

7.
管保山  梁利  姜伟  刘玉婷  刘倩 《油田化学》2021,38(4):614-619
为研究瓜尔胶压裂液破胶和循环使用的影响因素,从返排液中残余稠化剂和交联剂性能变化、存在状态以 及含量等方面入手,研究残余稠化剂和交联剂对返排液重复配制压裂液性能的影响机理。结果表明,随着破胶 时间或破胶剂加量的增加,瓜尔胶压裂液破胶液黏度降低、抽滤时间减少,小分子比例增加;酶破胶具有选择性, 破胶后甘露糖与半乳糖的比例保持不变;氧化破胶不具选择性,随破胶时间延长,半乳糖含量下降,分子结构发 生变化,侧链半乳糖限制主链甘露糖形成螺旋能力减弱,瓜尔胶水溶性降低,形成絮状沉淀;破胶液中残余稠化 剂含量对瓜尔胶溶胀的影响较小,但由于破胶液中长链瓜尔胶分子之间嵌入了小分子交联体,长链间缠绕和交 联受到影响,导致压裂液耐剪切能力下降;多次循环破胶液中,小分子比例增加,破胶液黏度大于返排液黏度要 求,循环利用返排液时必须控制残余稠化剂糖含量在0.2%以下。  相似文献   

8.
为解决现阶段酶破胶剂在压裂液破胶应用领域中破胶效率低、 适应范围窄、 特别是难以适应低温领域破胶需求的问题, 研究了来源于肠杆菌 N18(Enterobacter sp. N18)的耐低温复合酶 MEMA10的组成及与压裂液的配伍性, 评价了该酶的破胶性能, 以及 pH值、 温度和盐浓度等对粗酶酶活和破胶效果的影响。结果表明, MEMA10以β-甘露聚糖酶为主, 同时含有葡聚糖酶为代表的纤维素酶类, 以及脂肽类生物表面活性剂, 可作为以植物胶为增稠剂的压裂液的破胶剂。MEMA10与压裂液中各项添加剂配伍性良好。在 pH 3.0数 8.0范围内, 破胶剂活性能保持在 75%以上; 在 20~ 60℃范围内均能在 3 h内将高黏度瓜尔胶压裂液的黏度降至 5 mPa· s以下; 在 1 mol/L和 2 mol/L的 NaCl长时间作用下, 酶活仍在 80%以上。40~ 60℃范围内, 压裂液经 MEMA10彻底破胶后的表、 界面张力以及残渣量均符合行业标准。MEMA10具有使用浓度低、 pH适应范围广、 耐盐、 低温活性强、 破胶残渣少等特点, 适应中低温压裂破胶的需求。图8表3参24  相似文献   

9.
由于压裂液中的稠化剂以大分子化合物为主,以致压裂液残渣对地层伤害严重,影响到压裂后的增产效果。降低残渣伤害最有效的办法是降低稠化剂的分子量。本文通过酶降解的方法,在较少工艺流程和无溶剂的情况下,控制温度为40~50℃、酶加量3.5 u/mL、降解2 h即可得到满足油田压裂改造需要的较小分子量瓜尔胶。降解后瓜尔胶的重均分子量为4.25×105 g/mol,压裂液黏度为27 mPa·s。瓜尔胶降解前后的红外光谱表明酶降解使瓜尔胶长链分子断裂成较小分子量的链段。小分子瓜尔胶压裂液(3.5 g/L)与有机硼交联剂交联形成的冻胶在100℃、170 s-1下连续剪切2 h后,黏度大于80 mPa·s,抗剪切性较好。该压裂液的残渣为96 mg/L,仅为普通瓜尔胶压裂液残渣的1/4。  相似文献   

10.
针对浅层低温油气井压裂后压裂液破胶不彻底、返排率低的问题,优选了亚硝酸盐与铵盐、三氧化铬和葡 萄糖、过氧化氢3种自生热体系的最佳反应参数,分析了3种自生热体系的生热量以及对压裂液破胶性能的影 响。结果表明,硝酸盐与铵盐自生热体系的最佳反应参数为激活剂HCl浓度2 mol/L,生热剂NaNO2和NH4Cl(物 质的量比1∶1)浓度为8 mol/L;三氧化铬和葡萄糖自生热体系的最佳反应参数为激活剂HCl浓度1 mol/L,生热剂 CrO3和C6H12O6(质量比1∶1)加量为14%;过氧化氢自生热体系的最佳反应参数为激活剂MnO2加量0.3%,生热剂 H2O2加量为30%。过氧化氢自生热体系的生热量最高,温度可达到91 ℃。在压裂液破胶实验中,葡萄糖和三氧 化铬自生热体系和破胶剂过硫酸铵的加入顺序对压裂液的破胶效果无影响,过氧化氢自生热体系应和破胶剂同 时加入,亚硝酸盐与铵盐自生热体系的加入顺序为先加入自生热体系后加入破胶剂。亚硝酸盐与铵盐自生热体 系是压裂液破胶体系的最佳添加剂,可使压裂液黏度降至6 mPa·s以下,破胶性能最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号