首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新疆某低硫磷超贫磁铁矿石平均铁品位为15.68%,磁性铁品位为10.03%,处于待开发状态。为了解高压辊磨超细碎—湿式预选抛尾工艺处理该矿石的节能增效效果,对该矿石进行了高压辊磨试验、辊压产品中磁干抛试验、粗粒湿式磁选试验、筛上干抛试验,以及辊压前矿石与粗粒湿式磁选精矿的可磨度对比试验。结果表明:(1)30~0 mm的干抛精矿采用高压辊磨闭路(筛孔宽5 mm)辊压破碎—粗粒湿式磁选工艺处理,可抛出作业产率达43.40%的尾矿,提高精矿磁性铁品位10.10个百分点、磁性铁作业回收率98.26%;(2)按磨矿产品-0.074 mm粒级含量分别为50%和80%计算的粗粒湿式磁选精矿相对干抛精矿的相对可磨度分别为1.41和1.26;(3)对高压辊磨—筛分闭路破碎系统返回料进行干抛,可抛出作业产率为55.65%、磁性铁品位为0.88%的块状尾矿,块状精矿磁性铁作业回收率达97.13%。可见,高压辊磨机的应用,能大幅度减少矿石入磨量,提高入磨品位,改善球磨给矿的可磨性,大幅度提高球磨机处理量,降低磨矿能耗;产出大量的块状尾矿和粗粒尾矿,可减少尾矿浆体的输送量和堆存量,从而减少尾矿输送和堆存费用,块状尾矿和粗粒尾矿有助于实现选矿厂固体废弃物的资源化利用。因此,高压辊磨机在该矿山有着很好的应用前景。  相似文献   

2.
采用高压辊磨—粗粒湿式磁选抛尾—阶段磨矿、阶段弱磁工艺流程对钟山磁铁矿进行了选别试验。结果表明,高压辊磨产品(-3 mm)经湿式预选后可提前抛出产率50.05%、全铁品位8.33%的尾矿,入磨矿石铁品位由23.67%提高到39.18%,为降低企业生产成本提供了技术支撑;预选精矿经阶段磨矿、阶段弱磁选可获得铁品位65.13%、铁回收率61.48%、磁性铁回收率98.65%的最终铁精矿产品。  相似文献   

3.
钟山铁矿选矿工艺研究   总被引:1,自引:0,他引:1  
朱德馨 《现代矿业》2014,(3):32-34,11
采用高压辊磨—粗粒湿式磁选抛尾—阶段磨矿、阶段弱磁工艺流程对钟山磁铁矿进行了选别试验。结果表明,高压辊磨产品(-3 mm)经湿式预选后可提前抛出产率50.05%、全铁品位8.33%的尾矿,入磨矿石铁品位由23.67%提高到39.18%,为降低企业生产成本提供了技术支撑;预选精矿经阶段磨矿、阶段弱磁选可获得铁品位65.13%、铁回收率61.48%、磁性铁回收率98.65%的最终铁精矿产品。  相似文献   

4.
针对某选矿厂入磨矿石品位低、磨矿能耗高的情况,进行了磨前预选试验。结果表明:①在各预选方案中,对高压辊磨机辊压产品中干筛出的6~0 mm粒级进行湿式预选抛尾效果较好。②高压辊磨产品振动筛(筛孔宽6 mm)筛下产品产率为63.81%,筛分效率为82.24%;筛下湿式预选精矿品位为31.22%,抛尾作业产率为39.84%、流程产率为25.42%,入磨品位提高3.77个百分点,达29.46%;湿式预选尾矿经直线脱水筛(筛孔宽0.5 mm)脱水筛分,可获得流程产率为5.13%的粗砂,但含水量高达18.68%。③在直线脱水筛筛分前先增设旋流器分级,可有效解决粗砂含水量较高的问题,满足砂石骨料含水量的要求。④工艺优化改造后,不仅入磨矿量减少,入磨品位提高,球磨能耗下降,销售收入增加,尾矿库库容压力下降,还为选矿厂扩能创造了条件。  相似文献   

5.
内蒙古某贫磁铁矿石为含磁铁矿石英岩,矿石铁品位为34.21%,杂质成分主要为Si O2。矿石中铁主要以磁铁矿形式存在,铁在磁铁矿中分布率为57.94%,其次为硅酸铁,占总铁的21.25%。为给该矿石的合理预选工艺提供参考,进行了高压辊磨—磁选预选抛尾试验。结果表明:破碎至-30 mm矿石经高压辊磨闭路破碎至-3 mm后湿式预选指标优于高压辊磨闭路破碎至-5 mm后干式预选指标,-3 mm产品在磁场强度为151.27 k A/m条件下弱磁选,获得的预选精矿铁品位为43.02%、回收率为83.21%,磁性铁品位为29.81%、回收率为99.17%,可抛除产率为33.79%的废石。矿石可磨度对比试验结果表明,在获得相同的磨矿细度时,高压辊磨破碎后矿石所需要的磨矿时间更短,且高压辊磨破碎粒度越细,矿石的可磨度越好。  相似文献   

6.
湖南某低品位铁矿石TFe品位24. 10%,磁性铁占总铁的34. 56%。铁主要以磁铁矿和赤(褐)铁矿的形式存在,硫、磷含量较低。为实现"能抛早抛",对矿石块矿干选抛尾精矿进行高压辊磨—预选抛尾试验。结果表明,相比高压辊磨开路流程,闭路流程辊磨产品-1 mm粒级含量高31. 34个百分点,达63. 59%,粒度更细;闭路辊磨产品中磁粗选—强磁扫选粗粒湿式预选抛尾可获得产率82. 71%、TFe品位27. 28%、回收率93. 56%的预选精矿,抛除产率17. 29%、TFe品位8. 98%、回收率6. 44%的合格尾矿,抛尾效果明显,可有效降低后续磨选流程负荷和选矿成本。  相似文献   

7.
耿希华 《现代矿业》2020,36(11):132-134
哈萨克斯坦Velikhovskoe铁矿属于低品位磁性铁矿石,为了提高铁矿石的入选品位,减少入磨矿石量,提高流程的处理能力,采用干式预选+高压辊超细碎+磨前湿式预选流程进行了预先抛尾试验。试验结果表明:原矿破碎至30~0 mm,在28 kA/m的磁场强度下经永磁中场强干式磁选机抛尾,可抛除12.07%的废石;抛尾精矿经高压辊超细碎后矿石粒度为3~0 mm,再经湿式预选在磁场强度为119.37 kA/m的条件下可获得铁品位32.59%的铁精矿,预先抛尾将入磨入选的矿石铁品位提高12.68个百分点,抛出36.95%的尾矿,有利于降低能耗,提高流程的处理能力。  相似文献   

8.
针对某地超贫铁矿石,在矿石特性研究基础上,进行了常规破碎-干式预选试验和高压辊磨超细碎-干式预选试验。确定了常规破碎-干式预选试验的适宜预选粒度为-2mm,预选精矿铁品位为19.92%,抛尾率84.15%。高压辊磨机-2mm产品的干式预选精矿铁品位为38.92%,抛尾率94.87%,可大幅减少后续磨机处理量。  相似文献   

9.
低品位钒钛磁铁矿预选抛尾工艺试验   总被引:1,自引:0,他引:1  
薛忠言 《现代矿业》2012,(7):103-105
重钢西昌矿业有限公司太和矿区为综合回收利用低品位钒钛磁铁矿,进行了预选抛尾干式磁滑轮抛尾、粉矿干式抛尾、粗粒湿式磁选抛尾3种工艺流程试验。经对各流程选别指标的分析对比,并结合现实生产中的选矿工艺流程,提出了高压辊磨超细碎+粗粒湿式磁选抛尾的新工艺,其矿石入选品位可提高8~12个百分点,铁回收率可达到60%~70%,技术指标较好,为工业设计提供了参考依据。  相似文献   

10.
孙业长 《金属矿山》2017,46(5):69-72
为了解高压辊磨破碎对罗河铁矿选矿厂细碎产品可磨性的影响,对现场细碎产品进行了开路辊压破碎、边料返回闭路辊压破碎试验,边料返回闭路辊压破碎产品与现场细碎产品相对可磨度测定试验,样品和高压辊磨机边料返回闭路破碎产品球磨功指数测定试验,以及增设高压辊磨工艺后一段球磨扩能效果分析。结果表明:①高压辊磨作业可大幅度提高产品中细粒级含量,边料返回闭路破碎试验产品-3 mm粒级含量由辊磨前的56.73%提高至85.30%,提高28.57个百分点;-5 mm粒级含量由辊磨前的67.79%提高至92.65%,提高24.86个百分点;单位处理量为252 ts/(hm3)。②高压辊磨作业可显著改善入磨矿石的磨矿性能,当磨矿细度为-0.075 mm占60%时,与样品相比,高压辊磨机边料返回闭路破碎产品的相对可磨度为1.294;样品经高压辊磨破碎后,其球磨邦德功指数由16.15 kWh/t降至13.75 kWh/t,降幅为14.86%。③选矿厂增设高压辊磨边料返回超细碎作业后,由于入磨矿石可磨性的改善,一段球磨的产能可提高35.41%。  相似文献   

11.
为了高效低耗开发利用吉林某磁铁矿石资源,对高压辊磨超细碎—磁选工艺进行了研究。结果表明,对30~0 mm矿石采用高压辊磨闭路破碎(筛孔宽5 mm,筛上中磁干选抛废后再返回)—辊压产品湿式中场强磁选—粗精矿阶段磨选流程处理,干抛产率为18.41%(抛尾铁品位为3.61%),湿式中磁选抛尾产率为35.42%(抛尾铁品位为10.80%),最终获得了铁品位为68.16%、铁回收率为69.35%的铁精矿。贯彻了早抛早丢、节能减排理念,取得了理想的分选指标。  相似文献   

12.
为了解南芬选矿厂北山部位矿石高压辊磨产品抛尾效果,在工艺矿物学研究的基础上进行了-3,-5 mm干式抛尾试验和-3 mm湿式抛尾对比试验。干式抛尾和湿式抛尾对比试验结果表明:在磁场强度240 kA/m的条件下,高压辊磨产品-3 mm湿式抛尾获得的精矿产率87.24%、TFe含量36.21%、mFe含量24.37%、TFe回收率95.13%、mFe回收率99.74%,尾矿产率12.76%、尾矿TFe含量12.69%、mFe含量0.43%、TFe回收率4.87%、mFe回收率0.26%;采用湿式抛尾方式,抛尾效率高,且后续生产容易控制。  相似文献   

13.
为了研究矿石进入球磨机前的加工工艺对矿石可磨性的影响,以秘鲁某磁铁矿石为矿样,进行Bond球磨功指数和相对可磨度试验。结果表明,在目标粒度106、74、45μm下,高压辊磨产品的Bond球磨功指数均比颚式破碎机产品低。而预磁选精矿的Bond球磨功指数则比高压辊磨产品都高,甚至高于颚式破碎机产品。球磨机选型时Bond球磨功指数的测定,须根据矿石进入球磨机前的处理工艺而定。在磨矿细度为-0.074mm占80%时,高压辊磨产品相对于颚式破碎产品的相对可磨度为0.90,高压辊磨产品相对于预选精矿的相对可磨度为1.23。入磨前颚式破碎、高压辊磨破碎、高压辊磨加预磁选3种不同的处理工艺会导致后续矿石可磨性不同。  相似文献   

14.
采用浅部矿的预选工艺对秘鲁某金铜铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿预选富集试验研究,为该矿石的合理预选工艺提供参考。结果表明,浅部矿的预抛—分级预选工艺(原矿-25 mm干抛—干抛精矿高压辊磨细碎—高压辊磨细碎产品湿抛—预抛尾矿分级回收)对深部矿石具有较好的适应性和预选富集效果,最终获得铜品位0.13%、铁品位48.76%、铜回收率87.49%、铁回收率97.93%的总预选精矿,总预选抛尾率为18.84%。项目成果为该矿石的合理预选工艺选择提供了参考,并为提高选厂后续磨浮作业的矿石入选品位,降低入磨矿量和磨选成本,综合回收矿石中铁铜等伴生有价金属创造了良好的前提条件。   相似文献   

15.
对攀西地区某低品位钒钛磁铁矿进行了矿石性质研究,并根据矿石性质进行了湿式粗粒中磁预选抛尾、连续磨选、阶段磨选选铁试验研究.采用湿式中磁预选抛废-阶段磨矿-弱磁选工艺流程,最终可以获得产率20.48%、铁品位57.41%、TiO2品位9.69%、铁金属回收率52.88%的铁精矿.根据试验结果,推荐的选铁试验流程为原矿(6 ~0 mm)-湿式中磁抛废-阶段磨矿(一段- 0.076 mm粒级占55%、二段-0.076 mm粒级占70%)-弱磁选工艺流程.  相似文献   

16.
对贫赤铁矿石的高压辊磨机产品分别进行干式预选试验和湿式预选试验研究,在此基础上进行了分级预选研究。试验结果表明:干式预选过程中,降低带速能够降低预选尾矿品位和产率,提高预选精矿回收率。湿式预选过程中,减小介质棒间隙,增加介质棒直径和提高背景磁场强度均能够降低预选尾矿品位和产率,提高预选精矿回收率。贫赤铁矿石单一形式的预选效果均不理想。对贫赤铁矿石高压辊磨机产品进行预先分级,筛上粗粒级产品进行干式辊式预选,筛下细粒级产品进行湿式高梯度预选,当分级粒度为0.5mm时,预选效果最佳。在入选铁品位24%的条件下,高压辊磨机粉碎产品的综合预选精矿品位较原矿品位提高8.44个百分点,回收率达86.51%,抛尾产率达35.71%。  相似文献   

17.
对马钢南山矿区低品位铁矿石,采用高压辊磨闭路超细碎技术,组合高压辊磨机与湿式粗粒磁选机,将破碎粒度从常规三段一闭路-20mm降至-3mm,实现了“多碎少磨、节能降耗”的选矿理念。采用的高压辊磨机超细碎、湿式分级、粗粒磁选预选抛废工艺,是低品位铁矿石选矿技术的重大突破。预选粗精矿用阶段磨选、高效磁选设备选别,在原矿入选铁品位降低的情况下,仍然可获高品质的铁精矿。  相似文献   

18.
为提高山东某铁矿选厂的磨矿效率、降低选矿成本,针对其磨前入料开展了预选试验研究。试验结果表明:该球磨给料适宜的预选粒度为-16 mm,采用干式预选工艺能够抛除16.94%的尾矿,抛尾铁品位为4.80%;采用湿式预选工艺能够抛除35.20%的尾矿,抛尾铁品位为6.68%;与干式预选相比,湿式预选可获得更高的抛尾率,但也会导致更多磁性铁的流失,矿山企业可针对不同的市场环境,选择不同的预选工艺,实现效益的最大化。  相似文献   

19.
以冀东地区某地下磁铁矿为研究对象,通过检测得出该矿石全铁品位26.77%,磁性铁占81.36%,主要脉石矿物石英占49.86%,属典型的"鞍山式"低贫磁铁矿。针对该磁铁矿的矿石性质,采用高压辊磨进行细碎试验,粒度碎至-3mm,通过湿式预选抛尾,预选精矿品位达到39.55%,然后进行了磨矿-磁选探索试验,当磨矿细度-0.074mm占96%时,1200GS场强下进行弱磁粗选,粗精矿品位达到62.97%。  相似文献   

20.
姑山矿和睦山选矿厂入磨磁铁矿石(20~0 mm)中存在大量废石,导致选矿生产效率低、生产成本高、尾矿库压力大、影响最终精矿品质的提升。为解决这些问题,对入磨铁矿石分别采用XGD65 50吸出辊带式干选机和ZCLA560 500选矿机进行了干式预选和湿式预选试验研究。结果表明:入磨磁铁矿石采用干式预选可抛除产率达15.94%的尾矿,抛尾全铁品位8.68%,尾矿磁性铁品位1.20%,预选精矿较原矿全铁品位提高了4.48个百分点。入磨磁铁矿石采用湿式预选可抛除产率达21.34%的尾矿,抛尾全铁品位8.89%,预选精矿较原矿全铁品位提高了6.74个百分点。预先抛尾减少了入磨矿石量,提高了后续作业的入选铁品位,有利于降低能耗、提高流程处理能力,为选矿流程的技术改造提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号