首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 500 毫秒
1.
为探究木质素对纤维素酶水解效率的影响,将苦竹中提取的乙醇木质素(EOL-B)和磨木木质素(MWL-B)作为模型物添加到微晶纤维素中进行酶吸附和水解。结果表明:添加8 g/L MWL-B使得反应72 h的葡萄糖得率从51.34%降低到46.06%;添加8 g/L EOL-B使得反应72 h葡萄糖得率从51.34%增加到61.06%。与MWL-B相比,EOL-B与纤维素酶蛋白之间亲和力和结合力较低,故纤维素酶在EOL-B上的非特异吸附更少。FT-IR和13C NMR分析表明:经乙醇处理后,木质素分子中C-C凝缩单元减少,β-O-4'键断裂,导致木质素分子的亲水性增加,阻断了与纤维素酶蛋白疏水性氨基酸的结合,对纤维素酶蛋白吸附量减少,从而使得纤维底物周围的酶蛋白浓度增加,水解率提高。  相似文献   

2.
采用Ni-P复合改性HZSM-5催化剂催化木质素降解制备高附加值的单酚类化学品,探讨了催化剂种类、金属负载量、反应温度、反应时间以及溶剂种类对木质素催化降解制备酚类化合物的影响。同时采用X射线衍射仪(XRD)、比表面积和孔径分析仪(BET)、化学吸附仪(NH3-TPD)、热重分析仪(TG)以及气相色谱质谱联用仪(GC/MS)对催化剂以及液相产物进行分析表征,同时探讨其催化失活以及再生机制。结果表明:Ni、P高度分散在HZSM-5催化剂的表面,Ni的添加有效地弱化了C-C键,致使β-O-4和α-O-4发生断裂,有效地提高了木质素加氢解聚的活性,减少了焦炭的生成,但催化剂的再生水热稳定性较差,重复使用性较低。当采用甲醇为供氢试剂,在反应温度为220℃,氢气压力为2MPa,反应时间为8h,催化剂负载量为10%,NaOH为共催化剂时,其木质素的转化率为98.6%,酚类化合物的含量达到74.97%。产物以苯酚、愈创木酚和紫丁香酚为主,低温促进了紫丁香酚的产生。  相似文献   

3.
综述了以糠醛为原料,经环戊酮制δ-戊内酯,经糠醇及四氢糠醇制1,5-戊二醇再制δ-戊内酯,以及经四氢呋喃制δ-戊内酯的3种主要合成途径并简述了经其他糠醛衍生物合成δ-戊内酯的途径;同时对δ-戊内酯在合成医药中间体和聚酯两方面的应用进行了总结。由于δ-戊内酯结构广泛存在于具有生物活性和光学活性的化合物中,可应用于医药领域,δ-戊内酯自身易聚合,也可与其他化合物形成聚交酯,合成的共聚物具有良好的生物相容性和生物可降解性,这使其在可生物降解材料领域应用受到关注,因此以糠醛为原料制备δ-戊内酯生产技术是未来的研究热点。  相似文献   

4.
木质素是重要的天然可再生芳香族化合物,是潜在的化石燃料替代者,是新型能源和芳香原料的来源。首先制备了催化剂g-C3N4和NC-800,并利用XRD、XPS、SEM、N2-TPD等表征方法对其进行表征。以过一氧硫酸盐(PMS)为氧化剂,在g-C3N4和NC-800的催化下解聚α-O-4型木质素模型化合物4-苄氧基苯酚。研究了催化剂在不同温度、时间下对4-苄氧基苯酚的解聚历程,结果表明,催化剂的比表面积越大、石墨N质量分数越高,模型化合物的解聚速率越高。提出了PMS氧化解聚α-O-4型木质素模型化合物的反应机理:活性氧自由基攻击模型化合物形成各种自由基,自由基进一步氧化形成单体产物。  相似文献   

5.
以异佛尔酮二异氰酸酯(IPDI)、甲基丙烯酸六氟丁酯(HFMA)、β-巯基乙醇(β-ME)、2-烯丙基醚-3-羟基丙烷-1-磺酸钠(UC-1)为原料合成聚合型乳化剂,进而以硅酸乙酯(TEOS)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸环己酯(CHMA)、丙烯酸丁酯(BA)、2-(全氟辛基)乙基甲基丙烯酸酯(HDFDMA)为主要单体,过硫酸钾(KPS)为引发剂,通过乳液原位聚合法和半滴定法合成纳米SiO2-含氟丙烯酸酯复合乳液。采用FT-IR、SEM、TG、水接触角仪等测试仪器对胶膜的结构、热稳定性和耐水性进行表征。结果表明:当乳化剂用量为5.5%,含氟单体用量为12%及纳米SiO2用量为2.2%时,胶膜的综合性能最佳,此时胶膜水接触角为122.3°,吸水率为3.9%,其热失质量5%时的分解温度为302 ℃,与纯丙烯酸酯胶膜相比,表现出优异的疏水性和热稳定性。  相似文献   

6.
以茉莉香精为芯材,以异氟尔酮二异氰酸酯(IPDI)分别与二乙烯三胺(DETA)、β-环糊精(β-CD)及β-CD/DETA反应物为壁材,采用界面聚合法制备了聚脲、聚氨酯、聚脲/聚氨酯3种不同结构壳体的香精微胶囊。探究了不同微胶囊壳体对微胶囊表观形貌、热稳定性、香精微胶囊缓释性的影响并通过动力学模型分析了香精扩散方式。结果表明,以β-CD/DETA制备的聚脲/聚氨酯复合壳体微胶囊成囊性优异,壳体致密完整,热稳定性和缓释性能最好,经其整理的纺织品可保持较浓香味90多天。3种香精微胶囊在100℃、120℃高温缓释数据均符合零级、一级、Ritger-Peppas及Higuchi动力学模型。聚脲/聚氨酯复合壳体Ritger-Peppas方程拟合后n值更加接近0.45,更符合Fick扩散,缓释性能更好。  相似文献   

7.
五元环氟化物的合成及应用   总被引:2,自引:0,他引:2       下载免费PDF全文
综述了以双环戊二烯(DCPD)、六氯环戊二烯(HCCPD)或八氯环戊烯(OCP)为起始原料合成1,2-二氯六氟环戊烯(F6-12)、1,3-二氯六氟环戊烯(F6-13)、1-氯七氟环戊烯(F7-1)、1,1,2,2,3,3,4-七氟环戊烷(F7A)、1,1,2,2,3,3-六氟环戊烷(F6A)、顺式-1,1,2,2,3,3,4,5-八氟环戊烷(cis-F8A)、八氟环戊烯(F8E)、3,3,4,4,5,5-六氟环戊烯(F6E)、1,3,3,4,4,5,5-七氟环戊烯(F7E)等系列五元环氟化物的合成路线,以及五元环氟化物在电子清洗、电子刻蚀、合成电子氟化液的应用。提出了五元环氟化物的合成研究重点是新型合成路线的开发、高催化活性且对人体健康无害的过程催化剂的开发,以及无污染化工艺过程的开发,而应用研究重点是开发五元环氟化物的电子级产品以及开发五元环氟化物的下游产品。  相似文献   

8.
通过齐聚催化剂和共聚催化剂的有机结合和相互协同,可实现以乙烯为唯一单体的串级催化聚合,合成乙烯与α-烯烃共聚的线性低密度聚乙烯和聚烯烃热塑性弹性体,但开发高选择性、高共聚能力、适合高温聚合的串级聚合催化体系仍极具挑战。本文围绕不同类型的乙烯齐聚/聚合反应,评述了乙烯二聚、三聚、四聚及聚烯烃大单体合成技术及其相应的串级催化聚合的研究进展。迄今,大部分串级催化聚合是在较低的聚合反应温度下进行的,有限的串级催化体系适合高温聚合;乙烯二聚和三聚串级催化聚合可合成短支链较均一的乙烯与α-烯烃共聚物,但在乙烯四聚串级催化聚合中1-辛烯的选择性亟待提高;此外,通过聚烯烃大单体的串级催化聚合,可为具有特殊链拓扑结构的高性能聚烯烃热塑性弹性体的开发开拓新途径。  相似文献   

9.
《应用化工》2022,(11):2051-2054
以木质素磺酸钠、丙烯酸为原料,采用水溶液聚合法合成了保水剂(高吸水性树脂);利用红外光谱对样品进行了表征;研究了合成反应及性能的影响因素,得到最佳工艺条件:交联剂0.16%0.18%,引发剂浓度5.45%0.18%,引发剂浓度5.45%6.33%,n(KOH)/n(AA)42%6.33%,n(KOH)/n(AA)42%47%,聚合温度7247%,聚合温度7278℃,木质素磺酸钠用量26.54%;吸水倍率可达875 g/g。  相似文献   

10.
木质素是自然界中含量最丰富的可再生芳香聚合物,具备取代或部分替代石油用于生产大宗化学品的潜力。然而,由于木质素复杂的分子结构和化学键连接方式,当前木质素综合利用技术普遍存在目标产物选择性低等问题。因此,新型催化体系的研究对于设计与开发木质素高效转化过程具有重要意义。利用一种新型高效的杂多酸离子液体催化体系,通过选择性氧化裂解木质素的C—O键和苯环,将木质素转化为重要化工产品马来酸二乙酯,并提出了可能的反应机理。研究结果表明,当以含有β-O-4连接的典型木质素模型化合物4-甲氧基-α-[(2-甲氧基苯氧基)甲基]-苯甲醇为反应底物时,在杂多酸离子液体催化剂[BSmim]CuH2PMo10V2O40的作用下,180℃下反应5 h后,上述木质素模型化合物转化率可达到98.5%,得到84.3%(质量)和62.2%的马来酸二乙酯收率和选择性。同时,杂多酸离子液体可以通过温度的调节实现与产物的分离,简化了催化剂的回收过程,而且该催化剂具有良好的循环使用性能,重复使用6次后仍表现出较好的催化活性。  相似文献   

11.
以脱氢枞酸(β-甲基丙烯酰氧基丙基)酯(DAHPMA)为单体,偶氮二异丁腈(AIBN)为引发剂,2-氰基-2-丙基苯并二硫(CPDB)为链转移试剂,在四氢呋喃溶液中进行可逆加成-断裂转移自由基聚合反应(RAFT)制备得到脱氢枞酸基酯均聚物。动力学研究表明了脱氢枞酸基单体可以在RAFT聚合下具有活性可控的特征,同时探讨了CPDB的浓度对松香基单体的RAFT聚合的影响,发现CPDB的浓度对聚合过程的速率和可控性以及相对分子量和相对分子质量分布都有一定的影响。通过核磁证实了该松香基均聚物的成功合成,接触角测试表明该聚合物具有高疏水性。  相似文献   

12.
齐娜  宋伟  刘立明  吴静 《化工学报》2021,72(1):216-228
C—C成键反应是有机合成中构建有机分子碳骨架的关键反应。综述了近年来生物催化Aldol、Acyloin condensation、Stetter 、Pictet-Spengler 等C—C成键反应的关键酶制剂,以及这些酶制剂催化合成β-羟基-α-氨基、α-羟基酮、1,4-二酮、β-咔啉、四氢异喹啉等精细化学品的研究进展。此外,还对生物催化C—C成键反应的应用前景进行了展望,从而扩大生物催化在化学品生产中的应用范围。  相似文献   

13.
目前工业上合成 α-硝基萘仍然采用传统的混酸硝化法,然而该方法存在区域选择性不高、官能团耐受性差、产生过量酸性废液以及后处理费用高等诸多局限性,导致环境污染以及生产成本的提高,不符合绿色化学的理念。鉴于 α-硝基萘的应用前景,本文通过浸渍-焙烧-还原等步骤设计合成一系列负载型铜催化剂,实现了萘向 α-硝基萘的高效、经济、绿色的催化转化。其中,以ZSM-5等为载体合成的催化剂Cu/ZSM-5催化效果最好,以较高的分离产率(高达95%)和优异的区域选择性[(α-∶β-)>(98∶2)]得到了目标产物α-硝基萘,而且在重复使用4次后依然保持较高的催化活性和结构稳定性。  相似文献   

14.
以碱处理β沸石作为硅铝源,以CTAB为模板剂,合成了β/MCM-41介孔-微孔复合分子筛,以其为载体制备Pd-β/MCM-41复合分子筛催化剂,利用XRD、N2吸附-脱附、NH3-TPD和XRF等技术对其进行了表征,并与γ-Al2O3、USY、ZSM-5等载体制备的催化剂比较了废食用油加氢裂解活性。结果表明:β/MCM-41复合分子筛同时具备β沸石和MCM-41分子筛的结构,β/MCM-41为载体时,Pd-β/MCM-41催化剂具有适宜的中强酸性中心,适宜的孔道分布结构,催化剂加氢裂解废食用油的活性最高。此外还考察了催化剂制备条件对废食用油加氢裂解反应的影响,结果表明:采用离子交换法制备负载量2%的Pd-β/MCM-41复合分子筛催化剂、焙烧温度为500 ℃时,催化剂对废食用油加氢裂解的效果最好。此时,原料油的转化率可以达到85.9%,生物汽油的收率可以达到16.4%,生物柴油的收率达到17.8%,且此催化剂水热稳定性较好,再生性能良好,工业化应用前景较好。  相似文献   

15.
β-环糊精是由7个D-吡喃葡萄糖单元通过α-1,4-糖苷键键连成环的超分子主体分子,“内疏水、外亲水”的独特结构赋予了其优异的分子识别能力;氧化石墨烯类材料凭借其优良特性成为近几年的研究热点。由β-环糊精和氧化石墨烯构筑的超分子杂化体在兼具二者特有性能的基础上又有新功能的引入。本文综述了β-环糊精-氧化石墨烯超分子杂化体的构筑方式,按二者间的连接方式,分别为共价键和非共价键两种连接方式,其中通过共价键连接是目前最主要的构筑方式;此外对β-环糊精-氧化石墨烯超分子杂化体的特征和表征进行了简述。同时对β-环糊精-氧化石墨烯超分子杂化体在水污染处理、电化学检测、药物控释和催化等领域的应用进展进行了综述。最后对该超分子杂化体在构筑和应用上的发展趋势进行了展望。  相似文献   

16.
Bisfunctional biphenylene monomers were designed, synthesized, and inspected as building blocks for aromatic polyketone synthesis. Starting from 2,2′-dimethoxybiphenylene (1), a highly activated acyl-acceptant biphenylene monomer affording high molecular weight polyketones, two types of biphenylene monomers were developed: 5,5′-bis(3[4]-chlorobenzoyl)-2,2′-dimethoxybiphenylenes (6) which readily gave the corresponding polyketones by nickel-catalyzed aromatic coupling polymerization and 2,2′-bis(trifluoromethyl)-4,4′-biphenylenedicarboxylic acid (27) which reacted with biphenylene 1 in P2O5---CH3SO3H to give the corresponding fluorinated aromatic polyketone, selectively. The related model reactions for both monomer synthesis and polymerization were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号