首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The energy in flowing river streams, tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A number of resource quantization and demonstrations have been conducted throughout the world and it is believed that both in-land water resources and offshore ocean energy sector will benefit from this technology. In this paper, starting with a set of basic definitions pertaining to this technology, a review of the existing and upcoming conversion schemes, and their fields of applications are outlined. Based on a comprehensive survey of various hydrokinetic systems reported to date, general trends in system design, duct augmentation, and placement methods are deduced. A detailed assessment of various turbine systems (horizontal and vertical axis), along with their classification and qualitative comparison, is presented. In addition, the progression of technological advancements tracing several decades of R&D efforts are highlighted.  相似文献   

2.
As the demand for renewable energy increases, it becomes important to critically examine the environmental impacts of renewable energy production. Often, the approach has been trial and error in renewable energy with respect to its impact on the environment. Hydrokinetic Energy Extraction (HEE) has been seen as a potentially “benign” form of renewable hydropower. This paper provides a benchmark for initial measurement of HEE environmental impacts, since negative outcomes have been present with previously assumed “benign” renewable hydropower. A Gorlov system was used to represent a HEE system. Life Cycle Assessment (LCA) was utilized to compare the environmental impacts of HEE with small hydropower, coal, natural gas and nuclear power. Environmental Protection Agency (EPA) criteria air emissions were quantified and compared over the life cycle of the systems. Life cycle air emissions were used in combination with TRACI to compare the systems. The Gorlov system was found to have the lowest life cycle impact with a system lifetime comparison, and did compare closely with small hydropower.  相似文献   

3.
Recently, various alternatives to batteries, such as microfabricated fuel cell systems, have been proposed for portable power generation. In large-scale power production plants emphasis is placed on energy conversion efficiency. On the other hand, the intrinsic design objective for portable power generation devices is the energy density, i.e., the electrical energy generated from a given mass or volume of device and fuel cartridge. It is plausible to stipulate that an increase in the energy conversion efficiency of a system leads to an increase in energy density, but we demonstrate through theoretical analysis and case studies that the two metrics are not equivalent. In some cases, such as systems with a combination of fuels, maximizing efficiency leads to drastically different design, operation and performance than maximizing energy density. Another interesting observation is that, due to interaction between components, maximal component efficiency does not always imply maximal system efficiency.  相似文献   

4.
Hydrokinetic devices have lately reemerged as a promising solution for harnessing energy from renewable sources such as rivers, tidal currents, or artificial channels. This paper describes a customized test flume that is capable of conducting tribological related experiments on sliding components (bearing, shaft, and generator seals) commonly used in hydrokinetic devices. Often while deployed, wear on bearing, shaft, and seal assemblies introduces undesirable clearances between contacting surfaces, which potentially can affect the performance of hydrokinetic devices. In order to investigate wear occurring specifically in bearing-shaft assemblies under conditions similar to those expected in the field, a flume was developed. The flume has the ability to recreate the hydrodynamic, salinity, sedimentary, and mechanical loading similar to field deployment. The wear rate data collected after 60 h of clear-water tests on four different types of bearings is presented. In addition, an approach is described whereby the coefficient of friction occurring within the bearing assemblies is estimated as a function of applied load.  相似文献   

5.
The behaviour of photogalvanic cells containing methylene blue with various reducing agents has been examined. Appreciable potentials and currents have been detected. the power conversion efficiency of an EDTA-methylene blue photogalvanic cell has been estimated to be ±0.04 per cent. the storage of light energy in iron-methylene blue and EDTA-methylene blue systems has been studied.  相似文献   

6.
The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system.The analysis of a fossil plant heating system has been done with a typical building simulation software IDA–ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA–ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy.The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study “ground source heat pump with condenser inlet temperature 30 °C and varying evaporator inlet temperature” has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system.  相似文献   

7.
The growing demand for electrical energy is one of the most important subjects today. Decreasing amount and environmental effect of fossil fuels does not seem to surmount this challenge. Renewable energies give a good perspective to be an alternative to fossil and nuclear-fueled power plants, in order to meet growing demand for electrical energy. Hydropower is well known in this category. Hydrokinetic energy technologies are relatively new than other hydropower systems. In this work has been investigated these kinds of hydrokinetic energy, and given some detailed information about current base of hydrokinetic. It has tried to give some knowledge in order to familiarize with the hydrokinetic turbine and generator. The selection information of a suitable turbine has been mentioned.  相似文献   

8.
《Renewable Energy》2000,19(1-2):259-275
This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency Vf2. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype.  相似文献   

9.
The amount of energy obtained from a wind energy conversion system (WECS) depends not only on the characteristics of the wind regime at the site, but it also depends on the control strategy used for the WECS. In order to determine the gain in energy derived from one concept as compared against another, models of several autonomous WECS have been developed using Matlab Simulink software. These allow easy performance evaluations and comparisons on different control strategies used, and determine the amount of energy injected to the grid in the case of the grid-connected systems. This paper also proposes a prototype version of the control strategy of a 20-kW permanent-magnet synchronous generator (PMSG) for maximum power tracking and compares with the results produced by previous strategies. Advantages of this mechanical sensorless control strategy for maximum power estimation are demonstrated by digital simulation of the system.  相似文献   

10.
More and more conversion systems have been proposed to capture wind energy in order to produce electrical power. In this paper, an energetic macroscopic representation is used to describe such systems composed of very different parts. This representation yields the simulation model of the overall system based on energetic considerations. Moreover, a control structure can be deduced from this representation by simple inversion rules. Hence, the different strategies of wind turbine management can be shown by the theoretical control structure. In order to illustrate this modelling and control methodology a 750 kW wind energy conversion system is studied and simulated.  相似文献   

11.
文章利用TRNSYS动态模拟软件研究了在我国不同建筑气候带条件下,不同类型的太阳能PV/T集热系统和普通太阳能PT集热系统的各项性能。其中,太阳能PV/T集热系统分为基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统。文章探究了基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统的电、热性能,分析了这两种太阳能PV/T集热器的光电转化效率,以及这两种太阳能PV/T集热系统和普通太阳能PT集热系统的光热转化效率、太阳能贡献率、一次能源节约率、供热节能率和环境效益等参数。分析结果表明:普通太阳能PT集热系统的吸热量、太阳能贡献率、供热节能率和CO2减排量均高于太阳能PV/T集热系统;与基于普通玻璃型太阳能PV/T集热系统相比,基于Low-e型太阳能PV/T集热系统的发电量降低了3.77%,但热效率、太阳能贡献率、一次能源节约率、供热节能率和环境友好度均较高。  相似文献   

12.
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed, it has been a potential alternative over fossil fuel-based engines and power plants, all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work, a theoretical model of a PEM fuel cell with solar air heating system for the preheating hydrogen of PEM fuel cell to mitigate the performance degradation when the fuel cell operates in cold environment, is proposed and evaluated by using energy analysis. Considering these heating and energy losses of heat generation by hydrogen fuel cells, the idea of using transpired solar collectors (TSC) for air preheating to increase the inlet air temperature of the low-temperature fuel cell could be a potential development. The aim of the current article is applying solar air preheating for the hydrogen fuel cells system by applying TSC and analyzing system performance. Results aim to attention fellow scholars as well as industrial engineers in the deployment of solar air heating together with hydrogen fuel cell systems that could be useful for coping with fossil fuel-based power supply systems.  相似文献   

13.
An identification and preliminary evaluation was made of alternative advanced electric power systems which have been suggested for possible future use by the American electric utility industry. The motivation for interest in advanced power systems stems primarily from the rapidly rising costs of clean fossil fuels, especially conventional fuel oil, and uncertainties of fuel supply. Four basic energy sources have been identified for prospective future American utility applications; namely, coal, nuclear, solar and geothermal. Each source must generally be subjected to extensive preprocessing before thermal energy can be delivered in a form useful to an electric power conversion system. Numerous candidate advanced energy conversion systems can be matched to the various energy sources, including steam, open cycle gas turbines, combined cycles, closed cycle gas turbines, MHD, fuel cells, liquid metal topping, supercritical carbon dioxide topping and others. Each has advantages and disadvantages which can be ranked and weighted numerically, based on our present knowledge. A tentative selection of promising combinations of energy sources and conversion systems has been made to focus attention on those which satisfy the socio-political requirements and also offer potential profit opportunities for suppliers to the electric utility industry.  相似文献   

14.
Various methods of making hydrogen from water have been proposed, but at the present time the only practical way to make hydrogen from water without fossil fuel is electrolysis. The development of a new, advanced, water electrolyser has become necessary for use in hydrogen energy systems and in electricity storage systems. All the new possible electrolysis processes, suitable for large-scale plants, are being analysed, in view of their combination with solar electricity source. A study of system interactions between large-scale photovoltaic plants, for electrical energy supply, and water electrolysis, is carried out. The subsystems examined include power conditioning, control and loads, as they are going to operate. Water electrolysis systems have no doubt been improved considerably and are expected to become the principal means to produce a large amount of hydrogen in the coming hydrogen economy age. Thus, the present paper treats the subject of hydrogen energy production from direct solar energy conversion facilities located on the earth's oceans and lakes. Electrolysis interface is shown to be conveniently adapted to direct solar energy conversion, depending on technical and economical feasibility aspects as they emerge from the research phases. The intrinsic requirement for relatively immense solar collection areas for large-scale central conversion facilities, with widely variable electricity charges, is given. The operation of electrolysis and photovoltaic array combination is verified at different insolation levels. Solar cell arrays and electrolysers are giving the expected results during continuously variable solar energy inputs. Future markets will turn more and more towards larger scale systems powering significantly bigger loads, ranging from hundreds of kW to several MW in size. Detailed design and close attention to subsystem engineering in the development of high performance, high efficiency photovoltaic power plants, are carried out. An overall design of a 50 MWp photovoltaic central station for electricity and hydrogen co-generation is finally discussed.  相似文献   

15.
Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) markets. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell (PEMFC) unit and a natural gas reformer (fuel processor) for hydrogen production. The performance analysis developed simultaneously the energy and economic viewpoints and enabled the determination of the best technical and economic conditions of this energy generation power plant, and the best operating strategies, enabling the optimization of the overall performance of the stationary cogeneration fuel cell unit. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant.  相似文献   

16.
The overall performance of a solar thermal electrical power generation system is governed by the performance of the energy collection system and the power conversion unit. Any system operating under given meteorological and solar radiation conditions has a unique energy collection temperature for which the electrical output of the system will be a maximum. An engineering analysis of the system was carried out to obtain general correlations which can be used for determining such an optimum temperature. Factual experience on the design and operation of a Rankine system, using flat plate collectors and the climatological data, was used to obtain numerical estimates for the net energy conversion capability of such systems operating in Kuwait.  相似文献   

17.
Wind energy is considered to be a very promising alternative for power generation because of its tremendous environmental, social, and economic benefits. Electrical power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of those facilities, therefore, affect the power system reliability in a manner different from that of the conventional systems. This paper is focused on the development of suitable models for wind energy conversion systems, in adequacy assessments of generating systems, using wind energy. These analytical models can be used in the conventional generating system adequacy assessment utilizing analytical or Monte Carlo state-sampling techniques. This paper shows that a five-state wind energy conversion system model can be used to provide a reasonable assessment of the practical power system adequacy studies, using an analytical method, or a state-sampling simulation approach.  相似文献   

18.
In this paper, we present a new alternative for improving both the performance of photovoltaic (PV) systems and the efficiency of the energy conversion by using different configuration of power converters. For this purpose, a comparative study between two configurations is carried out. The first configuration consists of a classical PV generator with a single centralized high power converter and the second one concerns a distributed topology. For this latter we use a certain number of PV strings with low power converters attached in series, in parallel or in a combination of series and parallel. Obviously the string topology has some advantages. Each power converter can control the power conversion of each module individually, which results in increased overall energy conversion of the entire system. The MPPT control system in this case can react effectively to atmospheric variations, to shading effect and to changes in the load. The PV system still operates even in case of failure on one of the power converters in a string. We simulated and compared the different conversion configurations in order to find the best one in terms of efficiency and produced energy. The obtained results are very interesting and can lead to optimal sizing and selection of best PV topology for a given application.  相似文献   

19.
The paper assesses the energy and environmental performance of two solutions designed to complement renewable energy (RE) technologies, in stand-alone power system (SAPS) configuration typical of minor Mediterranean islands, by converting the available RE surplus. The studied SAPS, based on the Ventotene island demographic, meteorological and load data, features high renewable energy penetration onto the load power demand, i.e. up to 55.25% share of peak power capacity. Transient models have been developed to simulate the storage process of winter renewable energy surplus and the time-dependent matching among SAPS electric demand and the stochastic renewable power contributions combined with energy surplus conversion systems. The study compares a hydrogen-based system and a desalinated water-production system, proposed as two effective alternatives for renewable energy seasonal buffering in an island context. The comparative analysis of the time-dependent system's behaviour has been investigated with an hourly distribution over the period of one reference year, in terms of fuel consumption and hydrogen system energy storage or desalination capacity. The assessment is carried out by taking performance indicators, SAPS fuel savings, as well as stored and dump power data. The study demonstrates the suitability of both the models for the winter renewable energy buffer, in order to improve to the matching of peak energy and water demands.  相似文献   

20.
基于燃料燃烧的微型能源动力装置具有高能量密度特性,可提供瓦到百瓦级的能量输出,因此在过去的20年间受到广泛关注。国内外学者研制了微型的燃气轮机、内燃机、推进装置、燃烧器、热电转换装置及热光电转换系统等不同类型的能源动力装置。然而,由于微尺度条件下燃烧环境和常规尺度存在差异,材料、密封及润滑等方面的技术瓶颈,目前大部分微型能源动力装置的性能未能到达预期的目标。由于微尺度燃烧基础理论有别于传统的常规尺度燃烧理论,随着其重要性的凸显,国内外学者对其进行了广泛深入的研究,更加清晰地揭示了微尺度火焰及燃烧的基本特性。本文首先介绍了国内外微型能源动力装置及系统的研究进展,然后对微尺度条件下预混及非预混火焰的研究现状进行了总结,在本文的最后部分提出了微燃烧相关亟待解决的科学及工程问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号