首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.  相似文献   

2.
The Escherichia coli protease HtrA has two PDZ domains, and sequence alignments predict that the E. coli protease Tsp has a single PDZ domain. PDZ domains are composed of short sequences (80-100 amino acids) that have been implicated in a range of protein:protein interactions. The PDZ-like domain of Tsp may be involved in binding to the extreme COOH-terminal sequence of its substrate, whereas the HtrA PDZ domains are involved in subunit assembly and are predicted to be responsible for substrate binding and subsequent translocation into the active site. E. coli has a system of protein quality control surveillance mediated by the ssrA-encoded peptide tagging system. This system tags misfolded proteins or protein fragments with an 11-amino acid peptide that is recognized by a battery of cytoplasmic and periplasmic proteases as a degradation signal. Here we show that both HtrA and Tsp are able to recognize the ssrA-encoded peptide tag with apparent K(D) values of approximately 5 and 390 nm, respectively, and that their PDZ-like domains mediate this recognition. Fusion of the ssrA-encoded peptide tag to the COOH terminus of a heterologous protein (glutathione S-transferase) renders it sensitive to digestion by Tsp but not HtrA. These observations support the prediction that the HtrA PDZ domains facilitate substrate binding and the differential proteolytic responses of HtrA and Tsp to SsrA-tagged glutathione S-transferase are interpreted in terms of the structure of HtrA.  相似文献   

3.
HtrA2/Omi, a mitochondrial serine protease in mammals, is important in programmed cell death. However, the underlining mechanism of HtrA2/Omi-mediated apoptosis remains unclear. Analogous to the bacterial homolog HtrA (DegP), the mature HtrA2 protein contains a central serine protease domain and a C-terminal PDZ domain. The 2.0 A crystal structure of HtrA2/Omi reveals the formation of a pyramid-shaped homotrimer mediated exclusively by the serine protease domains. The peptide-binding pocket of the PDZ domain is buried in the intimate interface between the PDZ and the protease domains. Mutational analysis reveals that the monomeric HtrA2/Omi mutants are unable to induce cell death and are deficient in protease activity. The PDZ domain modulates HtrA2/Omi-mediated cell death activity by regulating its serine protease activity. These structural and biochemical observations provide an important framework for deciphering the mechanisms of HtrA2/Omi-mediated apoptosis.  相似文献   

4.
Deg/HtrA proteases are a large group of ATP-independent serine endoproteases found in almost every organism. Their usual domain arrangement comprises a trypsin-type protease domain and one or more PDZ domains. All Deg/HtrA proteases form homo-oligomers with trimers as the basic unit, where the active protease domain mediates the interaction between individual monomers. Among the members of the Deg/HtrA protease family, the plant protease DEG7 is unique since it contains two protease domains (one active and one degenerated) and four PDZ domains. In the present study, we investigated the oligomerization behaviour of this unusual protease using yeast two-hybrid analysis in vivo and with recombinant protein in vitro. We show that DEG7 forms trimeric complexes, but in contrast with other known Deg/HtrA proteases, it shows a new principle of oligomerization, where trimerization is based on the interactions between degenerated protease domains. We propose that, during evolution, a duplicated active protease domain degenerated and specialized in protein-protein interaction and complex formation.  相似文献   

5.
To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.  相似文献   

6.
Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.  相似文献   

7.
The mitochondrial serine protease HtrA2/Omi: an overview   总被引:2,自引:0,他引:2  
The HtrA family refers to a group of related oligomeric serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. Mammals encode four HtrA proteases, named HtrA1-4. The protease activity of the HtrA member HtrA2/Omi is required for mitochondrial homeostasis in mice and humans and inactivating mutations associated with neurodegenerative disorders such as Parkinson's disease. Moreover, HtrA2/Omi is released in the cytosol, where it contributes to apoptosis through both caspase-dependent and -independent pathways. Here, we review the current knowledge of HtrA2/Omi biology and discuss the signaling pathways that underlie its mitochondrial and apoptotic functions from an evolutionary perspective.  相似文献   

8.
HtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although the overall structural integrity is well maintained and they exhibit similar mechanism of activation, subtle conformational changes and structural plasticity especially in the flexible loop regions and domain interfaces lead to differences in their active site conformation and hence in their specificity and functions.  相似文献   

9.
DegP (HtrA) is a periplasmic heat shock serine protease of Escherichia coli that degrades misfolded proteins at high temperatures. Biochemical and biophysical experiments have indicated that the purified DegP exists as a hexamer. To examine whether the PDZ domains of DegP were required for oligomerization, we constructed a DegP variant lacking both PDZ domains. This truncated variant, DegPDelta, exhibited no proteolytic activity but exerted a dominant-negative effect on growth at high temperatures by interfering with the functional assembly of oligomeric DegP. Thus, the PDZ domains contain information necessary for proper assembly of the functional hexameric structure of DegP.  相似文献   

10.
The human HtrA family of serine proteases (HtrA1, HtrA2, HtrA3, and HtrA4) are the key enzymes associated with pregnancy and closely related to the development and progression of many pathological events. Previously, it was found that halogen substitution at the indole moiety of peptide Trp‐1 residue can form a geometrically satisfactory halogen bond with the Drosophila discs large, zona occludens‐1 (PDZ) domain of HtrA proteases. Here, we attempt to systematically investigate the effect of substitution with 4 halogen types and 2 indole positions on the binding affinity and specificity of peptide ligands to the 4 HtrA PDZ domains. The complex structures, interaction energies, halogen‐bonding strength, and binding affinity of domain‐peptide systems were modeled, analyzed, and measured via computational modeling and fluorescence‐based assay. It is revealed that there is a compromise between the local rearrangement of halogen bond involving different halogen atoms and the global optimization of domain‐peptide interaction; the substitution position is fundamentally important for peptide‐binding affinity, while the halogen type can effectively shift peptide selectivity between the 4 domains. The HtrA1‐PDZ and HtrA4‐PDZ as well as HtrA2‐PDZ and HtrA3‐PDZ respond similarly to different halogen substitutions of peptide; –Br substitution at R2‐position and –I substitution at R4‐position are most effective in improving peptide selectivity for HtrA1‐PDZ/HtrA4‐PDZ and HtrA2‐PDZ/HtrA3‐PDZ, respectively; –F substitution would not address substantial effect on peptide selectivity for all the 4 domains. Consequently, the binding affinities of a native peptide ligand DSRIWWV–COOH as well as its 4 R2‐halogenated counterparts were determined as 1.9, 1.4, 0.5, 0.27, and 0.92 μM, which are basically consistent with computational analysis. This study would help to rationally design selective peptide inhibitors of HtrA family members by using different halogen substitutions.  相似文献   

11.
HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ–protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ–protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ–protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0355-1) contains supplementary material, which is available to authorized users.  相似文献   

12.
The HtrA family of serine proteases   总被引:27,自引:7,他引:20  
HtrA, also known as DegP and probably identical to the Do protease, is a heat shock-induced serine protease that is active in the periplasm of Escherichia coli . Homologues of HtrA have been described in a wide range of bacteria and in eukaryotes. Its chief role is to degrade misfolded proteins in the periplasm. Substrate recognition probably involves the recently described PDZ domains in the C-terminal half of HtrA and, we suspect, has much in common with the substrate recognition system of the tail-specific protease, Prc (which also possesses a PDZ domain). The expression of htrA is regulated by a complex set of signal transduction pathways, which includes an alternative sigma factor, RpoE, an anti-sigma factor, RseA, a two-component regulatory system, CpxRA, and two phosphoprotein phosphatases, PrpA and PrpB. Mutations in the htrA genes of Salmonella , Brucella and Yersinia cause decreased survival in mice and/or macrophages, and htrA mutants can act as vaccines, as cloning hosts and as carriers of heterologous antigens.  相似文献   

13.
14.
High-temperature requirement A (HtrA), a highly conserved family of serine protease, plays crucial roles in protein quality control in prokaryotes and eukaryotes. The HtrA protein contains a C-terminal PDZ domain that mediates the proteolytic activity. Here we reported the solution structure of the HtrA PDZ domain from Streptococcus pneumoniae by NMR spectroscopy. Our results showed that the structure of HtrA PDZ domain, which contains three α-helices and five β-strands, illustrates conservation within the canonical PDZ domains. In addition, we demonstrated the interactions between S. pneumoniae HtrA PDZ domain and peptides with the motif XXX–YYF–COOH by surface plasmon resonance. Besides, we identified the ligand binding surface and the critical residues responsible for ligand binding of HtrA PDZ domain by chemical shift perturbation and site-directed mutagenesis.  相似文献   

15.
High temperature requirement A (HtrA) and its homologues constitute the HtrA family proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone-proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.  相似文献   

16.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

17.
Cells precisely monitor the concentration and functionality of each protein for optimal performance. Protein quality control involves molecular chaperones, folding catalysts, and proteases that are often heat shock proteins. One quality control factor is HtrA, one of a new class of oligomeric serine proteases. The defining feature of the HtrA family is the combination of a catalytic domain with at least one C-terminal PDZ domain. Here, we discuss the properties and roles of this ATP-independent protease chaperone system in protein metabolism and cell fate.  相似文献   

18.
HtrA (high temperature requirement A), a periplasmic heat-shock protein, functions as a molecular chaperone at low temperatures, and its proteolytic activity is turned on at elevated temperatures. To investigate the mechanism of functional switch to protease, we determined the crystal structure of the NH(2)-terminal protease domain (PD) of HtrA from Thermotoga maritima, which was shown to retain both proteolytic and chaperone-like activities. Three subunits of HtrA PD compose a trimer, and multimerization architecture is similar to that found in the crystal structures of intact HtrA hexamer from Escherichia coli and human HtrA2 trimer. HtrA PD shares the same fold with chymotrypsin-like serine proteases, but it contains an additional lid that blocks access the of substrates to the active site. A corresponding lid found in E. coli HtrA is a long loop that also blocks the active site of another subunit. These results suggest that the activation of the proteolytic function of HtrA at elevated temperatures might occur by a conformational change, which includes the opening of the helical lid to expose the active site and subsequent rearrangement of a catalytic triad and an oxyanion hole.  相似文献   

19.
The mitochondrial serine protease HtrA2/Omi helps to maintain mitochondrial function by handling misfolded proteins in the intermembrane space. In addition, HtrA2/Omi has been implicated as a proapoptotic factor upon release into the cytoplasm during the cell death cascade. The protein contains a C-terminal PDZ domain that packs against the protease active site and inhibits proteolytic activity. Engagement of the PDZ domain by peptide ligands has been shown to activate the protease and also has been proposed to mediate substrate recognition. We report a detailed structural and functional analysis of the human HtrA2/Omi PDZ domain using peptide libraries and affinity assays to define specificity, X-ray crystallography to view molecular details of PDZ-ligand interactions, and alanine-scanning mutagenesis to probe the peptide-binding groove. We show that the HtrA2/Omi PDZ domain recognizes both C-terminal and internal stretches of extended, hydrophobic polypeptides. High-affinity ligand recognition requires contacts with up to five hydrophobic side chains by distinct sites on the PDZ domain. However, no particular residue type is absolutely required at any position, and thus, the HtrA2/Omi PDZ domain appears to be a promiscuous module adapted to recognize unstructured, hydrophobic polypeptides. This type of specificity is consistent with the biological role of HtrA2/Omi in mitochondria, which requires the recognition of diverse, exposed stretches of hydrophobic sequences in misfolded proteins. The findings are less consistent with, but do not exclude, a role for the PDZ domain in targeting the protease to specific substrates during apoptosis.  相似文献   

20.
Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号