首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 736 毫秒
1.
含铋催化剂对HTPB固化反应动力学的影响   总被引:1,自引:1,他引:0  
采用非等温差示扫描量热法(DSC)研究了三苯基铋(TPB)与三-(乙氧基苯基)铋(TEPB)对端羟基聚丁二烯-2,4-甲苯二异氰酸酯(HTPB-TDI)体系固化反应动力学的影响。测定不同催化剂体系的固化峰温,采用Kissinger法和Crane法分别计算其动力学参数,得出了相应的固化反应动力学方程。结果表明,加入催化剂后,HTPB-TDI固化温度降低,固化温差缩短。未加催化剂时固化反应的活化能为51.29kJ·mol-1,加入TPB和TEPB后活化能分别为46.43kJ·mol-1和40.14kJ·mol-1,TPB与TEPB均能降低固化反应的活化能,增大反应速率,从而降低反应温度,缩短固化时间。TEPB能使固化体系在34℃时的反应速率常数达到使用TPB作为催化剂时50℃的值,因此TEPB催化活性更大,可以用作室温催化剂。  相似文献   

2.
变温红外光谱法研究GAP与三种异氰酸酯的反应动力学   总被引:1,自引:1,他引:0  
用变温傅里叶变换红外光谱法研究了二月桂酸二丁基锡(T12)存在下GAP/HMDI、GAP/TDI和GAP/IPDI(此处GAP,HMDI,TDI和IPDI分别为聚叠氮缩水甘油醚,4,4'-二环己基甲烷基二异氰酸酯,甲苯二异氰酸酯和异佛尔酮二异氰酸酯)体系的反应动力学。结果表明,GAP与三种异氰酸酯(HMDI,TDI和IPDI)的反应为二级反应。它们的反应速率均随温度的升高而加快。GAP/HMDI、GAP/TDI和GAP/IPDI体系的反应活化能分别为15.49,12.27和22.46 kJ·mol-1,显示三个体系的反应活性递减次序为GAP/TDIGAP/HMDIGAP/IPDI。  相似文献   

3.
为明确3,3-双(叠氮甲基)氧丁环-四氢呋喃共聚醚(PBT)粘合剂与常用固化剂的反应过程,利用傅里叶变换红外(FT-IR)光谱法研究了PBT/多异氰酸酯(N100)、PBT/甲苯二异氰酸酯(TDI)和PBT/TDI/N100体系,50~80℃、TPB催化下的固化反应动力学。结果表明:PBT/N100在整个固化过程中遵循二级反应动力学规律,表观活化能63.10 kJ·mol~(-1),指前因子A=1.63×10~7h~(-1)。含有TDI的体系的固化过程均分为两段,但分段机理不同。PBT/TDI体系整个固化反应遵循二级反应动力学规律,但由于TDI上不同位置—NCO活性的差异,以转化率60%为界线分为两个阶段,转化率小于60%为第一阶段,转化率大于60%为第二阶段,相同温度下,第一阶段的反应速率明显高于第二阶段,两阶段的表观活化能分别为54.71 kJ·mol~(-1)和56.50 kJ·mol~(-1),指前因子分别为4.38×10~7h~(-1)和1.24×10~7h~(-1)。PBT/TDI/N100体系反应由于TDI和N100上—NCO活性的差异也分为两个阶段,转化率小于65%主要发生TDI扩链,表现为二级反应动力学,表观活化能为71.17 kJ·mol~(-1),指前因子A=4.58×10~8h~(-1);转化率大于65%主要发生N100交联,反应速率受扩散控制。TDI/N100复配时,指前因子较单一N100体系和单一TDI前后两阶段分别扩大了28,10,37倍,表明固化剂复配后反应活性位点增加。  相似文献   

4.
非等温DSC研究Al/HTPB/TDI体系的固化反应动力学   总被引:9,自引:5,他引:4       下载免费PDF全文
采用非等温差示扫描量热法(DSC)研究了铝粉对端羟基聚丁二烯/甲苯二异氰酸酯体系(HTPB/TDI)固化反应动力学的影响.结果表明,HTPB/TDI体系的固化反应表观活化能约为51.826 kJ·mol-1,反应级数为0.926,指前因子为2.412×105 min-1; 加入铝粉后,体系的固化峰温降低,表观活化能、反应级数和指前因子分别提高至76.402 kJ·mol-1、0.944、2.53×108 min-1,机理函数仍遵循Avrami-Erofeev方程G(α)=[-ln(1-α)]n,只是方程中的指数n有所变化.铝粉对HTPB/TDI固化反应的影响表现为在反应程度18%前起加速作用,18%后起延缓作用.浅析了铝粉影响HTPB/TDI体系固化的原因.  相似文献   

5.
为了解不同催化剂[二月桂酸二丁基锡(DBTDL)、乙酰丙酮铁(Fe AA)、辛酸亚锡(TECH)、三亚乙烯二胺(DABCO)、三苯基铋(TPB)、纳米氧化锌(nano-ZnO)]条件下HTPB/IPDI黏结剂体系的固化过程,采用黏度法研究了45℃时,不同催化剂作用下,端羟基聚丁二烯(HTPB)/异佛尔酮二异氰酸酯(IPDI)体系的黏度-时间关系,并探讨了固化反应速率的变化。结果表明,45℃时,无催化剂和不同催化剂作用下HTPB/IPDI体系的流变反应速率常数分别为:k_(blank)=0.002,k_(DBTDL)=0.045,k_(FeAA)=0.0439,k_(TECH)=0.0335,k_(DABCO)=0.0051,k_(TPB)=0.0036,k_(nano-ZnO)=0.0034。不同催化剂对HTPB/IPDI体系固化反应速率常数的影响效果为:DBTDLFe AATECHDABCOTPBnano-ZnO。在HTPB/IPDI体系中,使用DBTDL,Fe AA,TECH,DABCO,TPB,nano-ZnO作为催化剂时,黏结剂体系的适用期分别为0.3,0.7,1.9,6.7,16,18 h。通过固化过程中浆料适用期和反应速率常数k的变化情况分析,认为TPB更适合作为HTPB/IPDI体系的固化催化剂。黏度对数随时间的增长趋势均呈现出前期快后期慢,向图线右下方偏离的两阶段现象。造成这一现象的主要原因是由于IPDI中NCO基团反应活性的明显差异导致:IPDI中的伯NCO基受到环己烷环和甲基的位阻效应,其反应活性明显低于环上的仲NCO基的反应活性。  相似文献   

6.
HTPB/N100体系的聚合反应动力学和粘度变化   总被引:3,自引:3,他引:0  
采用浓度-时间比法研究端羟基聚丁二烯(HTPB)/N100反应动力学,利用Matlab软件计算得到反应级数和不同温度下反应速率常数,考察了反应速率变化对催化剂用量的依赖关系,并对过程中粘度与时间的变化关系进行研究.结果表明:HTPB/N100反应符合一级反应规律,活化能Ea=70.57 kJ·mol-1;反应速率常数与...  相似文献   

7.
采用傅里叶变换红外(FT-IR)光谱法研究了二聚脂肪酸二异氰酸酯(DDI)/端羟基聚丁二烯(HTPB)体系的固化反应动力学,并与异佛尔酮二异氰酸酯(IPDI)/HTPB体系进行了比较。初步探索了DDI在HTPB推进剂中的应用。结果表明,DDI/HTPB体系的固化反应为二级反应,表观活化能为37.02 k J·mol-1,相比IPDI/HTPB体系降低了3.5 k J·mol-1,说明DDI的反应活性稍高于IPDI,反应活性适中,可作为低毒固化剂应用于HTPB推进剂中。DDI/HTPB体系推进剂具有较好的常温力学性能,抗拉强度为0.85 MPa时,最大伸长率为44.1%,可基本满足推进剂的常温力学性能要求。  相似文献   

8.
为了解叠氮黏合剂/非异氰酸酯固化剂固化体系的反应特性,通过微量热法研究了3,3-双(叠氮甲基)环氧丁烷与四氢呋喃共聚醚(PBT)与非异氰酸酯固化剂-丁二酸二丙炔醇酯(BPS)黏结体系的固化反应过程,采用Kissinger法和Crane法计算了该黏结体系固化反应的动力学参数和特征温度,根据333.15、343.15、353.15和363.15 K四个等温条件下该黏结体系完全固化所需的时间拟合了完全固化时间与温度的方程.结果表明,PBT/BPS黏结体系固化反应的表观活化能为81.94 kJ·mol-1,指前因子为108.48 s-1,反应级数为0.93,固化反应热为-926.88 J·g-1;该黏结体系的凝胶温度为319.29 K,固化温度344.52 K,后固化温度为366.11 K;该黏结体系固化反应中存在自催化现象;拟合出的该黏结体系完全固化时间与温度之间的关系式为y=8.3345×104e-0.02309x-11.116.  相似文献   

9.
吴兴宇  崔庆忠  徐军 《含能材料》2016,24(11):1097-1101
为了解决工程应用中遇到的固化终点问题,采用等温与非等温差示扫描量热法(DSC法),通过模拟n级反应动力学模型,并根据Kissinger法、Crane法研究了高聚物粘结炸药(PBX)用端羟基聚丁二烯(HTPB)型粘结体系的固化反应动力学。结果表明,HTPB/TDI粘结体系固化反应的表观活化能为54.61kJ·mol~(-1),反应级数为0.87,指前因子为192.80s~(-1),固化反应热Hu为482.87J·g~(-1)。该体系的固化反应过程中存在自催化现象。加入二月桂酸二丁基锡(T12)催化剂后,粘结体系的固化反应速率增大、反应温度降低。拟合出了固化温度与固化时间之间的函数关系,当固化温度取60℃时,求得固化时间约为3.91天,与实际工程应用中的4~6天相符。  相似文献   

10.
研究了新型混合固化剂二聚脂肪酸二异氰酸酯(DDI)/异佛尔酮二异氰酸酯(IPDI)固化端羟基聚丁二烯(HTPB)基聚氨酯的力学性能及其在PBX炸药中的应用。结果表明,当混合固化剂中DDI与IPDI的异氰酸酯基(NCO)的摩尔比为1/3时,HTPB基聚氨酯的拉伸强度和延伸率达到最大值(0.427 MPa和579.9%)。当DDI与IPDI的NCO摩尔比为1/1时,聚氨酯的压缩失效载荷最高。DDI/IPDI固化的HTPB基聚氨酯的延伸率是甲苯二异氰酸酯(TDI)固化聚氨酯的2.51倍。DDI/IPDI固化的PBX炸药的压缩率比使用TDI提高57.3%。使用DDI/IPDI时,PBX药片撞击感度试验和药片剪切试验的反应阈值提高了0.25 m以上,PBX的撞击安全性得到改善。  相似文献   

11.
孙甜甜  厉刚 《含能材料》2013,21(1):49-52
N,N-二甲基-2-叠氮乙胺(DMAZ)是一种可替代肼类推进剂的新型低毒液体燃料。为了提高DMAZ的合成效率,利用紫外吸收光谱测定法研究了水介质中N,N-二甲基-2-氯乙胺盐酸盐与叠氮化钠反应合成N,N-二甲基-2-叠氮乙胺盐酸盐的动力学过程。结果表明,该反应为二级反应,337.15,347.15,357.15 K温度下的表观反应速率常数分别为1.337×10-3,3.403×10-3,7.082×10-3L·mol-1·min-1,表观活化能Ea为83.5 kJ·mol-1,指前因子k0为1.19×1010L·mol-1·min-1。  相似文献   

12.
添加纳米铝的高密度悬浮燃料点火性能   总被引:2,自引:1,他引:1  
为了探究含金属颗粒悬浮燃料的点火和燃烧特性,制备了含5%纳米铝颗粒(Al NPs)的HD-01和四环庚烷(QC)的高密度悬浮燃料,采用雾化激波管测试了两种悬浮燃料在不同压力和温度下的点火延时P,通过拟合计算得到了表观点火活化能,分析了悬浮燃料的点火燃烧机理,采用高速摄像机记录了点火燃烧的流场图像。结果表明,悬浮燃料静置4周后无颗粒聚沉现象;在0.05 MPa和0.1 MPa下、1450 K和1750 K内,Al NPs可使HD-01和QC燃料的点火延时缩短约50%,表观点火活化能由161.4 k J·mol~(~(-1))和120.3 k J·mol~(-1)分别降低至156.5 k J·mol~(-1)和112.8 k J·mol~(-1);推测燃烧机理为铝原子优先与O2反应生成O自由基,进而加速燃烧反应。此外,Al NPs能够完全燃烧并促进燃料燃烧过程中的能量释放。  相似文献   

13.
采用Materials Studio分子模拟软件对3-硝酸酯甲基-3-甲基氧丁环聚合物(PolyNIMMO)与甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)和六次甲基二异氰酸酯和水的加成物(N-100)3种固化剂形成的混合体系固化行为及弹性模量进行了理论模拟,并与固化胶片力学性能实测数据进行了对比分析,研究了含能黏合剂PolyNIMMO的固化体系。结果表明:TDI、IPDI和N-100 3种固化剂均可与含能黏合剂发生聚氨酯交联反应,形成稳定的固化体系;与PolyNIMMO匹配的固化剂,以N-100为最佳,固化催化剂则以二月桂酸二丁基锡为最佳,最终形成的固化胶片力学性能为最大抗拉强度3.83 MPa,最大延伸率282%.  相似文献   

14.
四乙酰基二苄基六氮杂异伍兹烷氢解脱苄反应动力学研究   总被引:1,自引:0,他引:1  
研究了常压下以Pd/C为催化剂由四乙酰基二苄基六氮杂异伍兹烷(TADB)氢解脱苄合成四乙酰基六氮杂异伍兹烷(TAIW)的反应动力学。结果表明,在本实验条件下从反应开始到反应完成约90%时(以吸氢量计)TADB氢解脱苄对于TADB为一级反应。当反应介质为乙酸混合溶液时,常压氢气下该反应表观活化能为45.63kJ·mol-1,指前因子为106.04min-1;反应介质换为冰乙酸时反应表观活化能增大到79.90kJ·mol-1,指前因子则为109.93min-1。  相似文献   

15.
制备工艺对HMX机械感度和热分解特性的影响   总被引:5,自引:4,他引:1  
采用对原料奥克托今(HMX)筛分、球磨和溶剂/非溶剂重结晶等三种方法,制备出了不同形貌和粒度的HMX粉末。利用激光粒度仪和扫描电子显微镜(SEM)对样品进行了表征,并进行了撞击感度、摩擦感度及DSC测试,计算了三种HMX样品的表观热分解活化能。结果表明,筛分法制备的HMX样品,随着样品d50的减小,其机械感度没有明显的变化规律;球磨法制备的HMX样品,随着样品d50的减小,其撞击感度降低、摩擦感度升高;溶剂/非溶剂法制备的HMX样品,随着样品d50的减小,撞击和摩擦感度均降低。球磨法制备的HMX热分解活化能的平均值为262.184kJ.mol-1,明显高于溶剂/非溶剂法(238.902kJ.mol-1)和筛分法(242.343kJ.mol-1)。  相似文献   

16.
韩龙  许进升  周长省 《含能材料》2016,24(10):928-935
为研究HTPB/IPDI(hydroxyl-terminated polybutadiene/isophorone diisocyanate)复合固体推进剂细观界面性能随加载速率的变化规律,基于分子动力学算法生成了HTPB/IPDI复合固体推进剂的细观颗粒填充模型。颗粒与基体间粘接作用通过结合粘弹性标准机械单元及指数型率无关内聚本构所构建出的率相关内聚力模型模拟。通过HTPB/IPDI基体胶片的应力松弛试验得到细观模型中基体材料的松弛参数。基于模型对HTPB/IPDI推进剂在不同加载速率下(0.1,5,20 mm·min~(-1))的宏观力学响应进行仿真计算。利用数值仿真结果与HTPB/IPDI推进剂单轴拉伸试验结果曲线,通过Hooke-Jeeves优化算法对率相关内聚力模型参数进行反演分析,得到了优化后的界面参数数值。利用所建立的模型对50,100 mm·min~(-1)加载速率下的HTPB/IPDI复合固体推进剂材料的宏观力学行为进行预测。结果显示,预测结果与实际试验结果较为一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号