首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-temperature thermal non-equilibrium model is used to simulate and compare the arc characteristics within the converging-diverging and traditional cylindrical plasma torches.The modeling results show that the presence of the constrictor within the converging-diverging torch makes the evolution characteristics of the arc significantly different from that of cylindrical torch.Compared with a cylindrical geometrical torch,a much higher plasma flow velocity and relatively longer high temperature region can be generated and maintained inside the converging-diverging torch.In the constrictor of converging-diverging torch,the normalized radius of arc column increases and the degree of thermodynamic equilibrium of the plasma is significantly improved with the increase of axial distance.The radial momentum balance analysis shows that for the cylindrical torch,the pressure gradient that drives the arc expansion and the Lorentz force that drives the arc contraction dominate the radial evolution of the arc.While at the converging and constrictor region of a converging-diverging plasma torch,the radial gas dynamic forces in arc fringes pointing toward the arc center enhance the mixing of the cold gas of boundary layer with the high temperature gas of the arc center,increasing the average gas temperature and decreasing the thickness of cold boundary layer,thereby facilitating the formation of diffusion type arc anode attachment at the diverging section of torch.  相似文献   

2.
A two-temperature(2 T) thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT) and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then, a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE) model is presented. Furthermore, the temperature of the plasma jet generated by a RPT and the RPT's voltage are experimentally measured to compare and validate the result obtained by different models. The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13% and 8%,respectively, in all operating cases, validating the effectiveness of the 2 T model. The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet, showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT. Unlike other common hot cathode plasma torches, the thermal non-equilibrium phenomenon is found even in the arc core of the RPT, due to the strong cooling effect caused by the big gas flow rate.  相似文献   

3.
程昌明  唐德礼  赵杰 《核技术》2008,31(1):27-30
本文介绍了自行研制的直流非转移弧等离子体炬的结构和工作原理,研究了不同阳极结构等离子体射流的特性与气体流量、弧功率的关系,以及侧向垂直送气对射流形貌的影响.结果表明,阳极结构对等离子体射流特性的影响较大,弧压随着阳极压缩角的增大而下降,较小压缩角的射流稳定性更好;通道直径较小的等离子体射流刚性更强;不同阳极结构的等离子体炬可以有不同的应用领域.  相似文献   

4.
Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications.Nevertheless,the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet).However,there has been little study on the underlying mechanism of this key process.A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module.Thus,in this paper,the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed.Corresponding electrical models of different stages of the ignition process are set up and used to derive the electrical parameters,e.g.the variations of the arc voltage and arc current between the cathode and anode.In addition,the experiments with different ignition parameters on a home-made SPT have been conducted.At the same time,the variations of the arc voltage and arc current have been measured,and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.  相似文献   

5.
Laminar plasma jet(LPJ) generated by laminar plasma torch(LPT) has a favorable temperature and velocity distribution. Thus, it is superior to the turbulent plasma jet in material processing.However, most of the reported LPTs usually operate at a relatively low output power with a relatively low arc voltage and thermal efficiency, which limits its capabilities. In this context, this paper attempts to design a new type of high-power LPT with a relatively low arc current and a high thermal efficiency. In the first section, the design principle of the main components is studied and discussed in detail, and a new high-power LPT is proposed. Then, the experimental characteristics of the proposed high-power LPT are examined. Experimental results reveal the following characteristics of the proposed LPT.(1) The max jet length of the proposed LPT reaches at 540 mm.(2) Its mean arc voltage is higher than 290 V when the LPT works with arc currents lower than 200 A, leading to an output power greater than 50 kW.(3) The mean thermal efficiency is higher than 50%. Lastly, the proposed LPT has been applied to spheroidize the aluminum oxide powers. The experiment results for the production of spherical powders show that the proposed LPT has a good characteristic for material processing.  相似文献   

6.
Based on two typical laminar plasma torches(LPT), i.e. a multi-electrode plasma torch(MEPT) with segmented anode structure and a two-electrode plasma torch(TEPT) with conventional structure, this paper studied the influence of the LPTs construction on the jet characteristics. Experiments were designed to measure their arc voltage, jet length, thermal efficiency and specific enthalpy using a home-made data acquisition system. With them, the jet characteristics of the two different LPTs were compared in detail. Results show that different plasma torch construction leads to distinctively different characteristics of the generated plasma jet. Based on the different jet characteristics, a plasma torch with appropriate construction could be used to meet the different application requirements.  相似文献   

7.
Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.  相似文献   

8.
Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.  相似文献   

9.
The low power arc plasma is characterized by extremely high enthalpy and temperature and it is easy to generate and control,and thus thermal decomposition process based on the plasma torch is receiving a great attention for decomposing non-degradable greenhouse gases.In order to elevate the economic feasibility,the efects of input power,waste gas flow rate and additive gases on the destruction and removal efciency(DRE) of NF3 are examined.Specific energy density(SED) deceases as the flow rate increases,and accordingly,the DRE is reduced.The DRE is basically determined by the specific energy density.The highest DRE of NF3 was 97% for the waste gas flow rate of 100 L/min at a low input power level of 2 kW with the help of hydrogen additional gas.The inlet and outlet concentration of NF3 was analyzed using Fourier transform infrared spectroscopy(FT-IR) for DRE of NF3 evaluation.As a result,large amount of NF3 can be efciently decomposed by low power arc plasma systems.  相似文献   

10.
磁驱动旋转电弧运动图像及弧电压脉动的实验研究   总被引:1,自引:0,他引:1  
杜百合  黎林村  马强  陈佺  赵宇含  夏维东 《核技术》2005,28(10):745-750
磁驱动旋转电弧产生扩散电弧等离子体过程中有许多有趣的物理现象。本文利用高速摄影技术研究了大气压条件下、非均匀磁场中、大尺度磁驱动旋转氩电弧的电弧结构;在一定的弧电流和外磁场条件下,电弧的平面形状表现为不断发展和增长的螺旋结构,电弧螺旋结构的破裂往往产生于阴极附近的等离子体射流。采用图像分析的方法计算了外部磁场作用下阳极斑点沿弧室内壁的移动频率,分析了磁驱动旋转电弧运动过程中的弧电压脉动现象。结合电弧图像分析和电弧电压脉动及其FFT分析得出:电弧电压的大幅波动与多层电弧螺旋结构破裂和重建相关,而电弧电压的小幅波动则是弧根小幅跳动引起电弧拉长和收缩的结果。  相似文献   

11.
The temperature and density of plasma jets were estimated with a Boltzmann plot and Stark broadening of Ar I (696.54 nm) lines by optical emission spectroscopy (OES) in the process of plasma plastic, and the morphology and microstructure of tungsten (W) powders were investigated by scanning electron microscope (SEM) and x-ray Diffraction (XRD), respectively. The results show that the assumption of local thermodynamic equilibrium (LTE) was invalid at the end of the plasma jets, and earlier than this after the injection of tungsten powder. The temperature and electron density of the plasma jets were up to about T=6797 K with Qc=50 slpm and ne=1.05×1016 cm−3 with Qs=115 slpm at Z=60 mm, respectively, and both dropped rapidly with the injected tungsten powders of 20 μm. After the plasma plastic process, the spherical tungsten powders were prepared and there were some satellite particles on the surface of the spherical products. The tungsten powders were both composed of a single equilibrium α-W phase with a body centered cubic (bbc) crystal structure before and after plasma treatment.  相似文献   

12.
In this work, a magnetic fluid dynamics (MHD) model is used to simulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch under laminar and turbulent conditions. The electric current density, temperature and velocity distributions in the torch are obtained through the coupled iterative calculation about the electromagnetic equations described in a magnetic vector potential format and the modified fluid dynamics equations. The fluid-solid coupled calculation method is applied to guarantee the continuity of the electric current and heat transfer at the interface between the electrodes and fluid. The predicted location of the anodic arc root attachment and the arc voltage of the torch are consistent with corresponding experimental results. Through a specific analysis of the influence of mass flow rates and electric current on the torch outlet parameters, the total thermal efficiency, thermal loss of each part, and the laws of the variation of outlet parameters with the variation of mass flow rates and electric current was obtained. It is found that operation under a laminar condition with a limited area of the anode could increase the total thermal efficiency of the torch.  相似文献   

13.
1. IntroductionPlasma spraying has became a welLestablishedand widely-used technology with various industrialapplications[1,2,3]. In traditional plasma sprating,the design of plasma torch has been essentially thesame, based on producing a plasma jet by a dc arcopersted between a stick-type cathode and a nozzleshaped anode[4,5]. The powder is injected radiallyillto the plasma flame either within the anode channel or a short distance from the anode. With radialinjection of powders the heating a…  相似文献   

14.
Arc plasma can be applied in hazardous solid waste disposal for higher temperature than common heating methods, but some practical issues exist in practical engineering application. In this study, an air arc plasma torch with double chambers and magnetic controlling is designed to realize wide variable power and long electrode life. The detailed characteristics and laws of the air arc are studied. The condition parameters of arc current(I), air flow rate(G) and the structure parameters of inlet area ratios and electrode diameters influence both the arc voltage and arc root positions. The arc rotating driven by magnetic field effectively lengthens the electrode life. The gasification process and product of organic wastes by air plasma are influenced largely by the waste compositions and the air flow rate. A furnace structure with more even atmosphere and longer residence time should be considered for better gasification. Oxygen-deficient environment is important to suppress NOxformation during the application of air plasma. Inorganic solid wastes can be melt by the air plasma and cooled down to form compact vitreous structures in which heavy metals can be locked and the leaching rates significantly decrease down.  相似文献   

15.
The plasma synthetic jet is a novel active flow control method because of advantages such as fast response,high frequency and non-moving parts,and it has received more attention recently,especially regarding its application to high-speed flow control.In this paper,the experimental characterization of the plasma synthetic jet actuator is investigated.The actuator consists of a copper anode,a tungsten cathode and a ceramic shell,and with these three parts a cavity can be formed inside the actuator.A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes,through which the gas inside was heated and expanded from the orifice.Discharge parameters such as voltage and current were recorded,respectively,by voltage and current probes.The schlieren system was used for flow visualization,and jet velocities with different discharge parameters were measured.The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other.Through velocity measurement,it is found that at a fixed frequency,the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV.However,with the discharge voltage fixed,the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz,whereas at other testing frequencies no such decrease was observed.The maximum jet velocity measured in the experiment was up to110 m/s,which is believed to be effective for high-speed flow control.  相似文献   

16.
射频感应等离子体制备球形Ti粉的工艺   总被引:3,自引:0,他引:3  
采用射频(RF)感应等离子体球化颗粒形状不规则的Ti颗粒。研究了加料速率、物料分散方式、Ti颗粒大小等因素对球化率的影响。电子扫描显微镜(SEM)观察的球化效果以及对钛粉振实密度的测定表明:当钛原粉以极短暂时间快速穿越等离子体炬时,钛粉颗粒因受热而熔化成液滴,快速冷却,形成球形固态颗粒。  相似文献   

17.
High concentration of aqueous glycerine was decomposed using a direct current (DC) plasma torch at atmospheric pressure. The torch can generate the plasma with water as the plasma-supporting gas in the absence of any additional gas supply system and cooling devices. The results indicated that 5 mol% glycerine was completely decomposed by water plasmas at arc powers of 0.55~1.05 kW. The major products in the effluent gas were H 2 (68.9%~71.1%), CO 2 (18.9%~23.0%), and CO (0.2%~0.6%). However, trace levels of formic acid (HCOOH) and formaldehyde (HCHO) were observed in the liquid effluent. The results indicated that the water plasma waste treatment process is capable of being an alternative green technology for organic waste decomposition.  相似文献   

18.
Numerical simulation of turbulent mixing process of polydisperse quartz particle (particle size distribution in the range of 0.1–0.4 mm) flow with Ar and Ar-H2 plasma generated by radio frequency inductively coupled plasma (RF-ICP) torch has been made. An approximate two-stage approach has been proposed to calculate the spatial–temporal distributions of temperature and resulting thermal stress in quartz particles during dynamic heating in polydisperse plasma flow. The influence of working gas compositions, particle size distributions, injection angle and flow rate of carrier gas on the thermal destruction conditions of quartz particles has been determined under different particle feed rates. It is found that all the solid quartz particles (0.1–0.4 mm) could be thermal destructed without overheating in RF-ICP torch system, when the hydrogen volume fraction in working gases is more than 1.5%–2% and particle feed rate is in a certain range. The values of the maximum and minimum feed rates have been determined under different hydrogen volume fractions. An optimal particle injection angle and flow rate of carrier gas is found around 50°–60° and 160–220 slpm, under which the value of maximum equivalent thermal stress in quartz particles is highest.  相似文献   

19.
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.  相似文献   

20.
In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号