首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
以一幢103m高的高层住宅钢结构为案例,通过风洞模型试验和动力时程分析,获得了结构的风振位移和加速度响应.在风振分析中,构建了一种基于柔度概念并由柔度矩阵求逆形成刚度矩阵的结构简化计算模型,并与常用的剪切层模型进行了比较.结果显示,对于百米高的高层住宅钢结构,其风振位移响应虽由顺风向控制,但加速度响应则会转由横风向控制,而扭转向响应也不可忽略;文中建立的简化计算模型与剪切层模型相比更具合理性.  相似文献   

2.
利用高层建筑刚性模型测压风洞试验结果,对顺风向风荷载竖向、水平相干性,迎背风面相干性以及横风向、扭转方向风荷载相干性的主要特征进行研究。利用算例说明了迎背风面相干性以及横-扭风荷载相干函数对于风振响应的影响。从计算结果来看,迎背风面全相干假定将使顺风向风振响应计算结果偏于保守;当结构刚心和质心偏离时,假定横扭风荷载相干性等于零会低估横风向和扭转方向风振响应。  相似文献   

3.
进行了某复杂体形超高层建筑顺风向、横风向及扭转风致振动时程分析,用每层质量集中于楼板并视之为刚片的高层建筑层间结构模型代替精细有限元模型。计算结果显示结构位移响应以1阶模态响应为主,该模型代替精确有限元模型能够满足工程计算需要;对于质量中心和刚度中心重合的结构,扭转加速度响应在合加速度响应中占有的比例较小。  相似文献   

4.
根据Davenport脉动风速谱函数与日本规范中提出的横风向脉动风力谱系数函数模拟的顺风向与横风向脉动风压时程,采用Newmark法计算了一栋高68m的高层建筑物的风振扭转动力反应时程。计算时考虑了顺风向脉动风压与横风向脉动风压的联合作用。计算结果表明:结构扭转振动加速度响应以共振响应为主,非共振响应仅占次要的部分,这与谱分析法得出的结论是一致的,从而说明了计算结果的正确性。这对于正确估算结构的扭转风振反应值,为高层建筑风振控制措施设计提供参考依据是有一定意义的。  相似文献   

5.
本文利用刚性模型风洞试验得到的风荷载时程,对大剧院大跨椭球面屋盖和圆锥面幕墙结构进行风振响应时程分析,总结了该组合结构位移风振响应和加速度风振响应的特性.  相似文献   

6.
对钢结构高层建筑群中的典型狭长形建筑进行了表面风压的风洞模型试验,分别考虑了建筑为单体和群体的情况。利用试验获得的风荷载时程对该高层结构进行风振响应的动力时程分析,并着重对得到的与风致舒适度关联的加速度响应进行分析和讨论,对比群体效应对顺风向、横风向和扭转向峰值加速度的不同影响。结果表明,对于平面为狭长形的住宅钢结构高层建筑,扭转效应引起的风致峰值加速度不容忽略;而群体效应一般对结构的加速度呈增大趋势,而且对横风向及扭转向的增大程度通常大于对顺风向的程度。  相似文献   

7.
基于刚性模型表面测压风洞试验建立高层建筑三维风荷载模型,进而运用振型加速度法求解风振响应动力方程,得到了包含拟静力项和惯性力项的弹性力响应解,并推导了对称截面高层建筑顺风向、横风向和扭转向风致随机内力响应。在此基础上提出了基于内力响应等效的可考虑高阶振型贡献的对称截面高层建筑顺风向、横风向和扭转向等效静力风荷载计算方法。结合某一对称截面高层建筑工程实例,对采用上述方法计算得到的结构三维等效静力风荷载进行分析并与我国规范方法顺风向等效静力风荷载计算结果进行比较。结果表明,高层建筑结构抗风设计应该考虑三维等效静力风荷载,且二阶振型对高层建筑等效静力风荷载的贡献不可忽视。  相似文献   

8.
大跨单层球面网壳的风振系数及其参数分析   总被引:6,自引:0,他引:6       下载免费PDF全文
本文针对某工程的单层网壳结构方案,采用其风洞试验数据,通过有限元方法在时域内进行三维风振分析,获得了钢网壳24个风向角下的竖向风振系数值,并通过对试验数据和计算结果的分析,确定了风荷载的不利风向角。同时考虑到钢网壳在风荷载作用下,不仅产生竖向风振,并且存在水平向风振,计算了不利风向角下的顺风向和横风向风振系数。进一步进行了该网壳结构在各种参数工况下风振系数的参数影响分析。结果表明:风振系数随风向角变化敏感,在抗风设计时应该考虑到这一规律;斜杆的使用大大减小了单层球面网壳的风振系数值;边界约束条件对风振系数的影响不大;结构阻尼比对竖向风振影响比水平风振响应更明显,阻尼比增大,风振系数有一定程度的减小。这些结论可为单层网壳结构抗风设计、防灾分析提供借鉴。  相似文献   

9.
为评估高层建筑风振的舒适度,应建立简单实用的结构风振响应计算方法。而我国GB 50009—2012《建筑结构荷载规范》的高层建筑顺风向风振响应简化计算方法没有考虑二阶振型的贡献。基于准定常理论,采用频域法进行了考虑二阶振型贡献的高层建筑顺风向风致响应评估,并分析了二阶振型对结构风致响应的贡献。结果表明:二阶振型对高层建筑顺风向动力位移响应的贡献一般在2%以内,但对顺风向动力加速度响应的贡献最大能达到18%。在评估结构顺风向风振加速度响应时,二阶振型的贡献不能忽略。在此基础上,推导了考虑二阶振型的对称等截面高层建筑顺风向风振响应简化计算方法。将此简化方法得到的结果与频域法和规范公式得到的结果进行对比,其误差在5%以内,表明简化公式具有较好的精度和适用性。  相似文献   

10.
火炬系统塔架的风振响应分析及风振系数   总被引:1,自引:0,他引:1  
采用有限元法对火炬系统的塔架进行了固有振动分析,得到结构基本周期;并与采用STADDPRO/CHINA计算软件、CEC FASTEEL SUITE计算软件、规范给定的计算公式算得塔架结构的基本周期对比.结果表明,三种计算软件分析的结果非常接近,而规范给定的计算公式结果不同.进而,分别采用AR模型和小波分析模型模拟脉动风荷载,对塔架进行风振响应分析,获得不同高度处各节点的位移及加速度响应,统计了风振系数取值,并与现行规范进行比较,为实现将塔架结构风振响应简化成静力分析提供一个初步的研究方法.  相似文献   

11.
变电站构架柱顶避雷针及地线柱是对风荷载极为敏感的高耸结构,其风致振动破坏对变电站的安全运行影响很大。针对某750 kV变电站构架柱顶避雷针结构进行了气动弹性模型风洞试验,获得了模型结构的动力特性、高风速下顺风向风振响应和低风速下横风向风振响应以及结构的分段风振系数,经与现行相关设计规范的风振系数计算值、有限元时程分析数值对比,表明现行规范对这类结构的风振系数存在低估的风险。  相似文献   

12.
以某空间网壳结构为例,采用刚性模型风洞测试风压时程数据,形成有限元模型节点风荷载时程计算风振响应,从而得到风振系数.由于结构外形复杂,计算了3个方向的位移风振系数.分析表明,3个方向上屋盖风振系数随风向角变化规律类似,大拱曲边涡脱效应使得0度、180度风向角为最不利风向角.另外,比较了非线性模态叠加法与Newmark积分计算结果.表明该方法在充分选取参振振型后可快速求得风振系数,精度满足工程要求.  相似文献   

13.
针对GB 50009—2001《建筑结构荷载规范》(2006年版)和GB 50009—2012《建筑结构荷载规范》、美国规范ASME STS-1-2006、欧洲规范BS EN 1993-3-2:2006和CICIND模式规范(Revision 1-1999)等规范关于自立式高耸结构的风振响应计算方法进行了比较研究。对比了各规范中基本风速、风速高度变化系数、湍流强度等基本风特性和结构动力特性的简化计算方法,以及自立式高耸结构顺风向和横风向的风振响应计算方法。选用高度50m和90m的两座自立式钢烟囱作为算例,开展了顺风向和横风向风振响应计算方法的数值模拟对比分析。研究表明:在设计小阻尼、高柔的自立式高耸结构时,顺风向风振响应计算方法相对较为成熟,但气动阻尼的影响不可忽略;对于横风向风振响应,我国规范和欧洲规范(方法1)得到的结果相对偏小,同时,所有方法所得结果与实际观测均有一定的差距,设计时应谨慎选择横风向风振响应计算方法。  相似文献   

14.
矩形高层建筑横风向风振响应简化计算   总被引:13,自引:0,他引:13       下载免费PDF全文
基于风洞试验数据和随机振动理论,本文提出了矩形高层建筑横风向风振响应简化计算公式,这些简化公式的提出将求高层建筑横风向风振响应的复杂积分变为方便的代数运算。本文应用这些简化公式对大量的矩形高层建筑实例进行了计算、分析。将本文提出的简化公式计算结果与积分计算结果比较,相对误差基本上在5%以内,因此本文提出的公式有较高的精度。用本文简化公式计算得到的高层建筑横风向风振响应与日本建筑荷载规范、加拿大国家建筑规范计算得到的横风向风振响应比较,总体上差异较小。由于本文提出的简化公式所依据的风洞试验模型和数据较为精细,因此本文简化公式有相当高的可靠性与合理性。  相似文献   

15.
窄基塔作为风敏感结构,风荷载常常是其主控因素,而现有杆塔规范中无法获取窄基塔风振系数。为解决这一问题,本文以某一110kV直线型窄基角钢塔为工程背景,利用ANSYS建立有限元模型进行数值仿真计算,获得结构自振动力特性。在考虑节点风荷载空间相关性的基础上,利用Davenport谱对结构风荷载进行了准确模拟。结合动力时程计算方式对结构进行风振响应分析,计算得到窄基塔的风振系数,并与现行杆塔规范进行比较。研究表明,窄基塔风振系数随塔高增加而增大,在横担处出现突变。模拟得到窄基塔各段风振系数与规范值相差20%左右,塔腿及横担处相差更大。最后,基于动力时程计算结果提出了工程适用的窄基塔风振系数简化计算公式,为窄基塔的大范围使用提供便利。  相似文献   

16.
超高层建筑遮挡物较少,在风荷载作用下,结构顶部强烈的风振加速度会引起人的不适。通过在超高层结构合理布置液体粘滞阻尼器增加结构阻尼比,从而有效控制结构风振响应,达到减振目的。以珠海某超高层工程实例为背景,采用风洞试验计算脉动风荷载时程,在最不利风向角风荷载时程作用下,对比分析了阻尼器不同楼层布置位置、不同平面布置位置、不同阻尼弹簧刚度及不同阻尼参数下的减振效果,选出最合理阻尼器布置方式,结构顶层风振加速度得到有效控制,减振效果明显。  相似文献   

17.
具有高柔性的特高压单柱拉线塔对风荷载十分敏感,风振系数的确定是其设计和应用的基础。建立了特高压单柱拉线塔塔线体系的有限元模型,阐述了基于振型叠加法的风振系数计算方法,考虑结构的前两阶振型的影响,基于时程分析的数据计算了单柱拉线塔的风振系数。结果表明:主柱上存在横隔材的位置风振系数会发生突变;时程分析得到的加权风振系数与按照荷载规范计算得到的加权风振系数较为接近;等效静力风荷载作用下,迎风侧主材轴力与风振响应的最大值较为接近,且大于平均风下主材的轴力。  相似文献   

18.
根据日本规范中提出的横风向脉动风力谱系数函数,利用人工模拟横风向脉动风压时程的方法,提出了一个矩形高层建筑横风向风振反应时程的计算方法供参考。采用Newmark法与Wilson-θ法计算了2栋建筑物顶部的横风向风振反应。计算结果表明,在横风向脉动风压的作用下,结构的风振反应以共振响应为主,非共振响应仅为次要的部分;这与谱分析法得出的结论是一致的;从而说明了计算结果的正确性。这对于正确估算结构的风振反应值,为高层建筑风振控制措施设计提供参考依据是有一定意义的。  相似文献   

19.
根据日本规范中提出的横风向脉动风力谱系数函数,利用人工模拟横风向脉动风压时程的方法,提出了一个矩形平面高层建筑横风向风振反应时程的计算方法.在计算过程由横风向脉动风压谱系数公式模拟了建筑结构横风向脉动风压过程,采用N ewm ark法计算了两幢建筑物顶部的横风向风振反应.计算结果表明:在横风向脉动风压的作用下,结构的风振反应以共振响应为主,非共振响应仅为次要的部分,这与谱分析法得出的结论是一致的,从而说明了计算结果的正确性.这对于正确估算结构的风振反应值,为高层建筑风振控制措施设计提供参考依据具有一定的意义.  相似文献   

20.
以具体工程为例,采用线性滤波法模拟了顺风向脉动风场,在时域内计算了高层建筑结构风振响应,并对位移阵风荷载因子法、惯性风荷载法和荷载规范法所计算的风振系数进行了对比分析,以供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号