首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
本文设计了一种液体表面张力系数的实验装置,采用电子天平测量液体表面张力大小,以三线调节的方式解决吊环水平问题,并利用制作好的仪器,进行了对比测量,得到准确的实验数据,且实验重复性好.  相似文献   

2.
本文对内径0.3m、高1m的加压微孔曝气反应器内的气含率进行了系统的研究,得出了曝气通量、表面张力、粘度和系统压力对气含率的影响特性。得出在实验范围内,反应器内的气含率随曝气通量、操作压力的增大而增大,随表面张力、粘度的增大而减小,根据质量守恒定理和气泡聚并的能量理论作出了定性的解释,同时根据试验数据得出了气含率的实验关联式。  相似文献   

3.
针对现有液体黏滞系数测量实验中存在的问题,改进了转筒法测量液体黏滞系数的实验,通过设计内外转筒动静结合结构将黏滞力转化为转筒的扭矩,利用三线摆把转筒扭矩转化为转筒的微小转动,并利用光杠杆法测量转筒的微小转动,将难以直观观察的黏滞力转化为常见易测的物理量,使实验现象更加明显。本实验巧妙地将相对运动的测量端固定起来,大大降低了测量的难度。此外,通过增加恒温装置和测温装置,实现了液体黏滞系数随温度的变化情况的测量,能够解决生产中的具体问题,具有一定的推广价值。  相似文献   

4.
为研究液体表面张力对远射程风送式喷雾机外部流场中雾滴特性与分布的影响,使用ANSYS ICEM软件建立了远射程风送式喷雾机出风口及外部流场的三维模型,采用CFD数值模拟探究液体表面张力分别为60.3、54.5、44.6、38.4、31.8mN/m时流场中雾滴粒径、密度、速度和沉积分布情况。结果表明:喷雾压力为1.8MPa时,各采样面上雾滴体积中值粒径随着喷雾距离的增加而变小,降低液体表面张力可以细化流场中雾滴粒径。不同液体表面张力下,喷筒出风口轴心范围0~1m区间内雾滴密度在流场中是最大的;当液体表面张力从60.3mN/m下降至31.8mN/m时,雾滴密度0.07kg/m~3所占面积沿喷筒出口轴线方向逐渐增加。雾滴平均速度随喷雾距离的增加而减小,液体表面张力对距离喷筒出口1~6m区域内雾滴平均速度影响最大,表现在液体表面张力越大雾滴平均速度越小。相同采样点上,雾滴沉积量随液体表面张力降低而减少。将雾滴沉积量的数值试验结果与田间试验结果进行χ~2检验,证明了所采用的模型仿真结果可信。  相似文献   

5.
介绍了振动管式液体密度计的工作原理,以及自行研制的悬臂梁式U型石英玻璃管式液体密度计的结构,采用集中参数法对其振动方程了推导,设计了信号采集与处理系统,并对整个测量系统进行了试验分析,结果表明,所设计的振动管式液体密度工作稳定,测量精度高,通过误差分析发现,温度是造成测量误差的主要原因,文中推导了温度修正系数。  相似文献   

6.
分析研究了直动式剪羊毛机的加压机构及加压杆长度对加压力的影响;同时介绍了一种压力传感器。用此传感器可以测出加压杆上的加压力,检查机体的垂直度,从而为提高剪羊毛机的制造质量提供科学依据。  相似文献   

7.
离心泵泵腔和平衡腔液体压力试验与计算   总被引:1,自引:0,他引:1  
设计了针对泵腔和平衡腔的液体压力测试装置,采用同一块压力传感器测量不同测点压力的方法,对不同直径平衡孔前、后泵腔和平衡腔的液体压力进行了测试及分析。试验发现,对这种前后密封环直径相同的叶轮,在密封环正常时密封环以上的前、后泵腔液体压力分布是不同的,且后泵腔液体压力普遍较前泵腔液体压力高。基于有、无液体泄漏泵腔液体压力曲线的分析,引入了泵腔液体压力损失系数,提出了设计工况有液体泄漏泵腔液体压力计算公式及其压力损失系数的具体确定方法。并用2台离心泵泵腔液体压力测试结果,验证了设计工况有液体泄漏泵腔液体压力计算公式具有较高的可信度。比较分析了设计工况平衡腔液体压力的理论计算结果和试验结果,验证了设计工况平衡腔液体压力数学模型能准确地预测出平衡腔液体压力,并从控制平衡腔液体泄漏量减少其液体压力及轴向力的角度,提出试验泵的平衡孔直径在6~8 mm较为合适。  相似文献   

8.
潜水泵泄漏液体在线排除装置的设计与开发   总被引:2,自引:1,他引:1  
针对大中型潜水泵存在的泄漏液体严重威胁电机的安全运行问题,在传统的气液喷射器的设计基础上,设计一种结构简单、便于操作的泄漏液体在线排除装置.用压缩空气作为装置的工作流体来抽取泄漏液体,并测取工作流体的最佳工作压力.为了优化设计,在保持最佳工作压力下,出口固定在6 m,对喷嘴出口到混合管进口的距离分别为0.8,1.0,1.5,3.0倍喷嘴直径的排液装置测取水的流量.优化结果显示喷嘴-接受室距离存在最佳尺寸为1.0倍喷嘴直径,此尺寸的装置具有最佳性能.在试验中,测量和比较被抽取的水的流量来达到优化设计的目的.  相似文献   

9.
盐碱地土壤通透性差,土壤内部氧气不足,导致植物出苗难、死苗多、生长困难。针对这一问题,设计了一种基于增氧加压功能的滴灌装置专门用于盐碱地灌溉,该装置包括水箱、氧气输送机构、水压增压机构以及液体输送机构,水箱用于容纳液体,氧气输送机构的输出端与水箱的内腔联通;水箱设置有出水口,出水口能够与液体输送机构联通;水压增压机构设置于液体输送机构上。不仅解决了现有技术中存在的滴灌装置滴灌效率低的技术问题,还利用氧气输送机构和水压增压机构,增加滴灌装置水箱中液体的含氧量,提升植物根茎对水肥的吸收能力和液体远距离输送能力,有效提高了水资源利用率和节水率,为盐碱地区农业滴灌技术的研究提供了参考。  相似文献   

10.
喷雾液动态表面张力与雾滴粒径关系   总被引:7,自引:1,他引:6  
为了描述喷雾液的动态表面张力与雾滴粒径的关系,用粒度分析仪对不同表面张力喷雾液喷雾时形成的雾滴体积中径D50进行了研究.重点考察了喷头尺寸、喷雾压力对D50的影响.结果表明:喷雾液0.023 s时的动态表面张力值γ0.023越低,所形成的雾滴D50越小,D50与γ0.023呈线性相关;喷雾压力相同时,随着喷头尺寸的增大,喷雾液动态表面张力的改变对雾滴粒径的影响增大;喷头尺寸相同时,随着喷雾压力的增大,喷雾液动态表面张力的改变对雾滴粒径的影响减小.  相似文献   

11.
采用VOF两相流模型研究了气液叉流条件下受热液膜热质传递特性,在模型中添加了表面张力源项和气液相间传质源项.为了验证所建立模型的可靠性,采用非接触式红外热成像测温方法,进行了相应的气液叉流试验.对叉流条件下受热液膜热质传递过程进行了试验和模拟计算,结果显示无量纲壁面温度计算结果与试验结果吻合很好.应用所建立的模型,模拟计算并分析了表面张力、固液接触角、液膜流量等因素对液膜流动侧形和热质传递性能的影响,结果表明:在其他参数保持不变的情况下,表面张力从0.014 N/m增大到0.072 N/m的过程中,液膜覆盖面积由82.7%减小到73.2%;固液接触角从30°增大到60°的过程中,液膜覆盖面积由80.6%减小到69.4%;液膜流量越小,液膜厚度越小,越有利于液膜的蒸发;相反,较高的液膜流量会使液膜厚度增大,阻碍了液膜蒸发,从而使外掠过液膜的单位体积空气含湿量减小.  相似文献   

12.
搭建同步光学可视化实验台,以并联三角形微通道硅基热沉为实验段,微通道入口玻璃盖板内侧溅射5个Pt微加热器构成种子汽泡发生器阵列。研究了低入口质量流量下不同种子汽泡触发频率对微通道内沸腾不稳定性的影响。实验结果表明,种子汽泡触发频率作为控制微通道内流动沸腾不稳定的重要参数,单相液体区域,种子汽泡对微通道内流动影响很小;两相区域,随着热流密度增大,压降呈线性上升,壁面温度呈指数式上升。触发频率越高,压降越高,壁面温度下降越大。相同热流密度条件下,高频种子汽泡能够完全消除沸腾不稳定性,壁面温度显著下降,温度均匀性得到明显提升。  相似文献   

13.
多孔孔板水力空化可视化与数值模拟   总被引:1,自引:0,他引:1  
基于自行搭建的多孔孔板空化反应装置,采用高速数码摄影和长工作距离显微成像技术,对多孔孔板中心孔内和孔板末下游进行空化特性试验研究,并分析了入口压力、空化数等参数对孔板水力空化的影响。试验结果显示:随着入口压力升高,孔内空化数不断下降且开始产生空化。孔板内和孔板下游都有空化区存在,且孔内空化对下游空化区影响大。数值模拟结果显示孔内空化与试验相符合,且下游空化区的产生是由孔内空化云脱落至下游漩涡区引起的。  相似文献   

14.
为了研究各不同状态下叶片数对倒伞曝气机曝气性能的影响情况,制作了叶片数分别为6枚和8枚的2个倒伞曝气机叶轮,进行了溶解氧试验来研究倒伞曝气机的曝气性能.通过改变曝气池液位高度及倒伞曝气机浸没深度,研究了不同叶片数下,标准氧总转移系数、标准充氧能力和标准动力效率的变化规律.结果表明:在同一转速下,8叶片倒伞曝气机的标准氧总转移系数和标准充氧能力明显高于6叶片的.倒伞曝气机的叶片增加,叶轮的抛洒强度增加,液体与空气的接触面积增大,氧传质效率得到有效提高.同时,靠近自由液面的液体波动加大,使液体与气泡间的相互作用更加剧烈,增大了湍动传质的能力.但是增加叶片数会使得消耗的功率增加,故相同转速下不同叶片数的倒伞曝气机的标准动力效率差别较小.研究为倒伞曝气机的经济运行提供参考.  相似文献   

15.
有阀压电薄膜泵性能研究   总被引:9,自引:2,他引:9  
分析了腔体容积和阀的结构对压电泵最佳工作频率的影响,提出了小腔体、复合阀结构的压电薄膜泵设计观点。实验结果表明,采用较小的腔体体积(腔体压缩比足够大)和复合阀结构,可使压电泵最佳工作频率增加,同时使压电泵具有较强的自吸能力和抗气泡干扰能力。在无负载时对应流量的最佳工作频率为50Hz,随负载增加相应减小;对应输出压力的最佳工作频率为20Hz。在输入电压80V、工作频率20Hz时,压电泵最大自吸压力为2.5kPa,在输出压力小于3.0kPa时,进入腔体内的气泡可自行排出。  相似文献   

16.
旋喷泵内部压力提升是叶轮与旋壳共同作用的结果,一直以来泵腔内部压力根据叶轮出口压力确定,忽略了旋壳的圆筒效应,导致泵腔压力计算不够准确。为解决这一问题,基于旋壳圆筒效应建立旋喷泵内部压力数学模型,引入液体旋转系数,应用试验与数值计算相结合的方法对液体旋转系数进行了分析验证,并对液体旋转系数的影响因素进行了敏感性分析。结果表明:可以建立旋喷泵内部压力数学模型,通过理论计算内部压力分布,旋喷泵内部压力计算需考虑旋壳效应;试验泵液体旋转系数为0.75,在该系数下泵腔内部压力理论值与试验值吻合度较高;以一复式叶轮旋喷泵为实例,验证了该旋喷泵内部压力数学模型的可靠性。液体旋转系数影响因素敏感性分析表明:壁面粗糙度、转速、流量对液体旋转系数影响较小,试验范围内液体旋转系数介于0.736~0.764之间,波动较小,不超过3%,可以认为是定值。本研究结果可为旋喷泵内部压力理论计算及集流管安装高度选取提供参考。  相似文献   

17.
离心泵泵腔流道液体泄漏量试验与计算方法   总被引:3,自引:0,他引:3  
设计了针对泵腔流道液体泄漏量测量的专用试验装置,采用改变叶轮轴向位置(即改变泵腔轴向间隙)来改变隙径比的方法,在间隙为0.2 mm、0.3 mm,长度为15 mm密封环条件下,对隙径比为0.127、0.101、0.076、0.051、0.025、0.006的泵腔流道的进出口液体压力和液体泄漏量进行了测试及分析,并提出了泵腔流道液体泄漏量计算公式及其速度系数的确定方法。结果表明:不同隙径比的泵腔流道液体泄漏量系数与压力系数的变化很有规律性,其关系曲线几乎是一些斜直线,但隙径比和密封环间隙对其有较大影响;在泵结构不变情况下,只减小泵腔轴向间隙就能有效地减少液体泄漏量,提高泵容积效率,泵腔轴向间隙最佳取值范围为1~5 mm。  相似文献   

18.
变形椭圆齿轮式扎穴机构设计与工作参数试验优化   总被引:1,自引:0,他引:1  
针对深施型液态施肥机扎穴机构多参数下动力学性能差等问题,探索多工作参数下的变形椭圆齿轮式扎穴机构动力学变化规律,通过建立变形椭圆齿轮行星轮系的节曲线方程,采用Visual Basic 6.0语言,编写了变形椭圆齿轮式扎穴机构运动学仿真与优化软件,调节变形椭圆齿轮的长半轴长度、变形椭圆齿轮偏心率与变形椭圆齿轮变形系数等相关参数,优化并得到一组机构较优参数。搭建了扎穴机构动力学特性测试试验台,进行动力学特性试验。采用旋转中心复合试验设计方案,以行星架转速和土槽车前进速度为试验影响因素,以太阳轮轴所受扭矩和喷肥针入土时受到的拉压力为试验影响指标。在试验台上利用扭矩传感器、信号采集仪和DASP-10处理软件,测得太阳轮轴扭矩和喷肥针入土时受到的拉压力,建立试验影响因素和影响指标的关系模型及响应曲面图,并运用Design-Expert 8.0.10软件对试验数据进行分析。试验结果表明,当行星架转速64.4 r/min,前进速度0.61 m/s时,太阳轮轴扭矩为5.05 N·m,喷肥针受到的拉压力为20.03 N,此时机构动力学性能最优。应用此参数组合进行测试验证,验证了其合理性。该研究结果可保证扎穴机构在多工作参数下工作时,机具具有良好的扎穴性能。  相似文献   

19.
灌区塘堰拦蓄地表径流能力的研究   总被引:5,自引:1,他引:5  
塘堰是我国丘陵地灌区的一项重要灌溉设施,能拦蓄地表径流,蓄积降雨用于灌溉。提出拦蓄系数的概念,来衡量塘堰拦蓄地表径流的能力,并通过实例来说明拦蓄系数的计算及其应用。  相似文献   

20.
泵自吸过程的数值计算与可视化试验研究   总被引:1,自引:0,他引:1  
采用欧拉多相流模型、标准k-ε湍流模型及结合滑移网格技术并加载试验所得的叶轮转速变化曲线和出口压力变化曲线对65ZB-40C型外混式自吸泵自吸过程的气液两相流进行数值模拟,在叶轮进口、蜗壳各断面、气液分离室进口、回流孔上设置监测面,分析各监测面气体体积分数、气液相速度、混合相压力等参数的变化.采用高速摄影技术对自吸泵的叶轮、蜗壳、气液分离室及蜗壳出口段进行自吸过程的拍摄,把得到的图像与模拟结果进行对比.结果表明:自吸泵自吸过程中气液两相流态的微观变化与试验仪器监测到的压力、流量、转速等宏观变化具有一致性;自吸稳定过程占自吸时间的比例最大,对自吸性能的影响最大;气液分离室中心区域的气相空穴有利于蜗壳出口段的移动气泡的形成,有助于泵体内气体稳定地排出;自吸中期是一个动态稳定过程,进出口压力周期性地波动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号