首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
In the Thrace Peninsula, Neogene units were deposited in two areas, the Enez Basin in the south and the Thrace Basin in the north. In the southwesternmost part of the peninsula, upper lower–lower upper Miocene continental to shallow marine clastics of the Enez Formation formed under the influence of the Aegean extensional regime. During the last stage of the transpressional activity of the NW-trending right-lateral strike–slip Balkan–Thrace Fault, which had controlled the initial early middle Eocene deposition in the Thrace Basin, a mountainous region extending from Bulgaria eastwards to the northern Thrace Peninsula of Turkey developed. A river system carried erosional clasts of the metamorphic basement southwards into the limnic depositional areas of the Thrace Basin during middle Miocene time. Deposition of fluvial, lacustrine, and terrestrial strata of the Ergene Formation, which conformably and transitionally overlie the Enez Formation, began in the late middle Miocene in the southwest part and in the late Miocene in the north‐northeast part of the basin. Activity along the NE-trending right-lateral strike–slip faults (the Xanthi–Thrace Fault Zone) extending from northeast Greece northeastwards through the Thrace Peninsula of Turkey to the southern shelf of the western Black Sea Basin began during the middle Miocene in the northern Aegean, at the beginning of the late Miocene in the southwest part, and at the end of the late Miocene in the northeast part of the Thrace region. Although the Neogene deposits in the Thrace Basin were evaluated as the products of a northerly fault, our data indicate that the NW-trending northerly fault zone became effective only during the initial stage of the basin development. The later stage deposition in the basin was controlled by the NE-trending Xanthi–Thrace Fault Zone, and the deposits of this basin progressively evolved north/northeastwards during the late Miocene. During the late early Miocene–late Miocene interval, extension within the Thrace region was part of the more regional Aegean extensional realm, but from latest Miocene time, it has been largely decoupled from the Aegean extensional realm to the south.  相似文献   

2.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   

3.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

4.
《International Geology Review》2012,54(12):1419-1442
The Palaeogene deposits of the Thrace Basin have evolved over a basement composed of the Rhodope and Sakarya continents, juxtaposed in northwest Turkey. Continental and marine sedimentation began in the early Eocene in the southwest part, in the early-middle Eocene in the central part, and in the late Lutetian in the north-northeast part of the basin. Early Eocene deposition in the southern half of the present Thrace Basin began unconformably over a relict basin consisting of uppermost Cretaceous–Palaeocene pelagic sediments. The initial early-middle Eocene deposition began during the last stage of early Palaeogene transtension and was controlled by the eastern extension (the Central Thrace Strike–Slip Fault Zone) of the Balkan-Thrace dextral fault to the north. Following the northward migration of this faulting, the Thrace Palaeogene Basin evolved towards the north during the late Lutetian. From the late Lutetian to the early Oligocene, transpression caused the formation of finger-shaped, eastward-connected highs and sub-basins. The NW–SE-trending right-lateral strike–slip Strandja Fault Zone began to develop and the Strandja Highland formed as a positive flower structure that controlled the deposition of the middle-upper Eocene alluvial fans in the northern parts of the Thrace Palaeogene Basin. Also, in the southern half of the basin, the upper Eocene–lower Oligocene turbiditic series with debris flows and olistostrome horizons were deposited in sub-basins adjacent to the highs, while shelf deposits were deposited in the northern half and southeast margin of the basin. At least since the early Eocene, a NE-trending magmatic belt formed a barrier along the southeast margin of the basin. From the late Oligocene onwards, the Thrace Palaeogene Basin evolved as an intermontane basin in a compressional tectonic setting.  相似文献   

5.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

6.
Shoreface sandstone deposits within the Early Carnian part of the Snadd Formation of the Norwegian Barents Sea can be traced for hundreds of kilometres in the depositional strike direction and for tens of kilometres in the depositional‐dip direction. This study uses three‐dimensional seismic attribute mapping and two‐dimensional regional seismic profiles to visualize the seismic facies of these shoreface deposits and to map their internal stratigraphic architecture at a regional scale. The shoreface deposits are generally elongate but show variable width from north‐east to south‐west, which corresponds to a sediment source in the northern part of the basin and a southward decrease in longshore sediment transport. The Snadd Formation presents an example of how large‐scale progradational shoreface deposits develop. The linear nature of its shoreface deposits contrasts with more irregular, cuspate wave‐dominated deltaic shorelines that contain river outlets, and instead implies longshore drift as the main sediment source. In map view, discrete sets of linear features bounded by truncation surfaces scale directly to beach ridge sets in modern counterparts. The shoreface deposits studied here are characteristic in terms of scale and basin‐wide continuity, and offer insight into the contrast between shallow marine deposition under stable Triassic Greenhouse and fluctuating Holocene Icehouse climates. Findings presented herein are also important for hydrocarbon exploration in the Barents Sea, because they describe a hitherto poorly understood reservoir play in the Triassic interval, wherein the most prominent reservoir plays have so far been considered to be found in channelized deposits in net‐progradational delta‐plain strata that form the topsets to shelf‐edge clinoforms. The documented presence of widespread wave‐dominated shoreface deposits also has implications for how the relative importance of different sedimentary processes is considered within the basin during this period.  相似文献   

7.
The Oligocene depositional history of the Thrace Basin documents a unique paleogeographic position at a junction between the Western Tethys and the Eastern Paratethys. As part of the Tethys, shallow marine carbonate platforms prevailed during the Eocene. Subsequently, a three-staged process of isolation started with the Oligocene. During the Early Rupelian, the Thrace Basin was still part of the Western Tethys, indicated by typical Western Tethyan marine assemblages. The isolation from the Tethys during the Early Oligocene is reflected by oolite formation and endemic Eastern Paratethyan faunas of the Solenovian stage. The third phase reflects an increasing continentalisation of the Thrace Basin with widespread coastal swamps during the Late Solenovian. The mollusc assemblages are predominated by mangrove dwelling taxa and the mangrove plant Avicennia is recorded in the pollen spectra. The final continentalisation is indicated by the replacement of the coastal swamps by pure freshwater swamps and fluvial plains during the Late Oligocene (mammal zone MP 26). This paleogeographic affiliation of the Thrace Basin with the Eastern Paratethys after ~32 Ma contrasts all currently used reconstructions which treat the basin as embayment of the Eastern Mediterranean basin.  相似文献   

8.
The stratigraphy of the last deglaciation sequence is investigated in Lake Saint‐Jean (Québec Province, Canada) based on 300 km of echo‐sounder two dimensional seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice‐front recession to the present‐day situation. Ten seismic units have been identified that reflect spatio‐temporal variations in depositional processes characterizing different periods of the Saint‐Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, a closing of the water body due to glacio‐isostatic rebound occurred at 8.5 cal. ka BP, drastically modifying the hydrodynamics. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river‐related sediment drifts and confined lobes. The closing of the water body is also marked by the onset of a wind‐driven internal circulation associating coastal hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts and a prograding shelf‐type body. The fingerprints of a forced regression are well expressed by mouth‐bar systems and by the shoreface–shelf system, the latter unexpected in such a lacustrine setting. In both cases, a regressive surface of lacustrine erosion (RSLE) has been identified, separating sandy mouth‐bar from glaciomarine to prodeltaic muds, and sandy shoreface wedges from the heterolithic shelf‐type body, respectively. The Lake Saint‐Jean record is an example of a regressive succession driven by a glacio‐isostatic rebound and showing the transition from late‐glacial to post‐glacial depositional systems.  相似文献   

9.
Marginal marine deposits of the John Henry Member, Upper Cretaceous Straight Cliffs Formation, were deposited within a moderately high accommodation and high sediment supply setting that facilitated preservation of both transgressive and regressive marginal marine deposits. Complete transgressive–regressive cycles, comprising barrier island lagoonal transgressive deposits interfingered with regressive shoreface facies, are distinguished based on their internal facies architecture and bounding surfaces. Two main types of boundaries occur between the transgressive and regressive portions of each cycle: (i) surfaces that record the maximum regression and onset of transgression (bounding surface A); and (ii) surfaces that place deeper facies on top of shallower facies (bounding surface B). The base of a transgressive facies (bounding surface A) is defined by a process change from wave‐dominated to tide‐dominated facies, or a coaly/shelly interval indicating a shift from a regressive to a transgressive regime. The surface recording such a process change can be erosional or non‐erosive and conformable. A shift to deeper facies occurs at the base of regressive shoreface deposits along both flooding surfaces and wave ravinement surfaces (bounding surface B). These two main bounding surfaces and their subtypes generate three distinct transgressive – regressive cycle architectures: (i) tabular, shoaling‐upward marine parasequences that are bounded by flooding surfaces; (ii) transgressive and regressive unit wedges that thin basinward and landward, respectively; and (iii) tabular, transgressive lagoonal shales with intervening regressive coaly intervals. The preservation of transgressive facies under moderately high accommodation and sediment supply conditions greatly affects stratigraphic architecture of transgressive–regressive cycles. Acknowledging variation in transgressive–regressive cycles, and recognizing transgressive successions that correlate to flooding surfaces basinward, are both critical to achieving an accurate sequence stratigraphic interpretation of high‐frequency cycles.  相似文献   

10.
The Eocene Trihueco Formation is one of the best exposed successions of the Arauco Basin in Chile. It represents a period of marine regression and transgression of second-order duration, during which barrier island complexes developed on a muddy shelf. The strata are arranged in classical shoaling-upward parasequences of shoreface and beach facies capped by coal-bearing, back-barrier lagoon deposits. These fourth-order cycles are superimposed upon third-order cycles which caused landward and seaward shifts of the coastal facies belts. The final, punctuated rise in sea level is represented by shelf mudrocks with transgressive incised shoreface sandstones. Relative sea-level oscillations as revealed in the stratigraphy of the Trihueco Formation show a reasonable correlation with published Eocene eustatic curves.  相似文献   

11.
《Sedimentology》2018,65(5):1558-1589
Most of the present knowledge of shallow‐marine, mixed carbonate–siliciclastic systems relies on examples from the carbonate‐dominated end of the carbonate–siliciclastic spectrum. This contribution provides a detailed reconstruction of a siliciclastic‐dominated mixed system (Pilmatué Member of the Agrio Formation, Neuquén Basin, Argentina) that explores the variability of depositional models and resulting stratigraphic units within these systems. The Pilmatué Member regressive system comprises a storm‐dominated, shoreface to basinal setting with three subparallel zones: a distal mixed zone, a middle siliciclastic zone and a proximal mixed zone. In the latter, a significant proportion of ooids and bioclasts were mixed with terrigenous sediment, supplied mostly via along‐shore currents. Storm‐generated flows were the primary processes exporting fine sand and mud to the middle zone, but were ineffective to remove coarser sediment. The distal zone received low volumes of siliciclastic mud, which mixed with planktonic‐derived carbonate material. Successive events of shoreline progradation and retrogradation of the Pilmatué system generated up to 17 parasequences, which are bounded by shell beds associated with transgressive surfaces. The facies distribution and resulting genetic units of this siliciclastic‐dominated mixed system are markedly different to the ones observed in present and ancient carbonate‐dominated mixed systems, but they show strong similarities with the products of storm‐dominated, pure siliciclastic shoreface–shelf systems. Basin‐scale depositional controls, such as arid climatic conditions and shallow epeiric seas might aid in the development of mixed systems across the full spectrum (i.e. from carbonate‐dominated to siliciclastic‐dominated end members), but the interplay of processes supplying sand to the system, as well as processes transporting sediment across the marine environment, are key controls in shaping the tridimensional facies distribution and the genetic units of siliciclastic‐dominated mixed systems. Thus, the identification of different combinations of basin‐scale factors and depositional processes is key for a better prediction of conventional and unconventional reservoirs within mixed, carbonate–siliciclastic successions worldwide.  相似文献   

12.
The Cutro Terrace is a mixed marine to continental terrace, where deposits up to 15 m thick discontinuously crop out in an area extending for ca 360 km2 near Crotone (southern Italy). The terrace represents the oldest and highest terrace of the Crotone area, and it has been ascribed to marine isotope stage 7 (ca 200 kyr bp ). Detailed facies and sequence‐stratigraphic analyses of the terrace deposits allow the recognition of a suite of depositional environments ranging from middle shelf to fluvial, and of two stacked transgressive–regressive cycles (Cutro 1 and Cutro 2) bounded by ravinement surfaces and by surfaces of sub‐aerial exposure. In particular, carbonate sedimentation, consisting of algal build‐ups and biocalcarenites, characterizes the Cutro 1 cycle in the southern sector of the terrace, and passes into shoreface and foreshore sandstones and calcarenites towards the north‐west. The Cutro 2 cycle is mostly siliciclastic and consists of shoreface, lagoon‐estuarine, fluvial channel fill, floodplain and lacustrine deposits. The Cutro 1 cycle is characterized by very thin transgressive marine strata, represented by lags and shell beds upon a ravinement surface, and thicker regressive deposits. Moreover, the cycle appears foreshortened basinwards, which suggests that the accumulation of its distal and upper part occurred during forced regressive conditions. The Cutro 2 cycle displays a marked aggradational component of transgressive to highstand paralic and continental deposits, in places strongly influenced by local physiography, whereas forced regressive sediments are absent and probably accumulated further basinwards. The maximum flooding shoreline of the second cycle is translated ca 15 km basinward with respect to that of the first cycle, and this reflects a long‐term regressive trend mostly driven by regional uplift. The stratigraphic architecture of the Cutro Terrace deposits is the result of the interplay between regional uplift and high amplitude, Late Quaternary glacio‐eustatic changes. In particular, rapid transgressions, linked to glacio‐eustatic rises that outpaced regional uplift, favoured the accumulation of thin transgressive marine strata at the base of the two cycles. In contrast, the combined effect of glacio‐eustatic falls and regional uplift led to high‐magnitude forced regressions. The superposition of the two cycles was favoured by a relatively flat topography, which allowed relatively complete preservation of stratal geometries that record large shoreline displacements during transgression and regression. The absence of a palaeo‐coastal cliff at the inner margin of the terrace supports this interpretation. The Cutro Terrace provides a case study of sequence architecture developed in uplifting settings and controlled by high‐amplitude glacio‐eustatic changes. This case study also demonstrates how the interplay of relative sea‐level change, sediment supply and physiography may determine either the superposition of cycles forming a single terrace or the formation of a staircase of terraces each recording an individual eustatic pulse.  相似文献   

13.
Although modern wave‐dominated shorelines exhibit complex geomorphologies, their ancient counterparts are typically described in terms of shoreface‐shelf parasequences with a simple internal architecture. This discrepancy can lead to poor discrimination between, and incorrect identification of, different types of wave‐dominated shoreline in the stratigraphic record. Documented in this paper are the variability in facies characteristics, high‐resolution stratigraphic architecture and interpreted palaeo‐geomorphology within a single parasequence that is interpreted to record the advance of an ancient asymmetrical wave‐dominated delta. The Standardville (Ab1) parasequence of the Aberdeen Member, Blackhawk Formation is exposed in the Book Cliffs of central Utah, USA. This parasequence, and four others in the Aberdeen Member, record the eastward progradation of north/south‐trending, wave‐dominated shorelines. Within the Standardville (Ab1) parasequence, distal wave‐dominated shoreface‐shelf deposits in the eastern part of the study area are overlain across a downlap surface by southward prograding fluvial‐dominated delta‐front deposits, which have previously been assigned to a separate ‘stranded lowstand parasequence’ formed by a significant, allogenic change in relative sea‐level. High‐resolution stratigraphic analysis of these deposits reveals that they are instead more likely to record a single episode of shoreline progradation characterized by alternating periods of normal regressive and forced regressive shoreline trajectory because of minor cyclical fluctuations in relative sea‐level. Interpreted normal regressive shoreline trajectories within the wave‐dominated shoreface‐shelf deposits are marked by aggradational stacking of bedsets bounded by non‐depositional discontinuity surfaces. Interpreted forced regressive shoreline trajectories in the same deposits are characterized by shallow incision of fluvial distributary channels and strongly progradational stacking of bedsets bounded by erosional discontinuity surfaces that record enhanced wave‐base scour. Fluvial‐dominated delta‐front deposits most probably record the regression of a lobate delta parallel to the regional shoreline into an embayment that was sheltered from wave influence. Wave‐dominated shoreface‐shelf and fluvial‐dominated delta‐front deposits occur within the same parasequence, and their interpretation as the respective updrift and downdrift flanks of a single asymmetrical wave‐dominated delta that periodically shifted its position provides the most straightforward explanation of the distribution and relative orientation of these two deposit types.  相似文献   

14.
David J. Went 《Sedimentology》2013,60(4):1036-1058
Quartzites are especially characteristic of Proterozoic and Cambro‐Ordovician shallow marine strata, whereas equivalent age fluvial deposits are commonly arkosic. The absence of land vegetation in the pre‐Silurian influenced weathering processes and styles of fluvial deposition. It may also have had an impact on shallow marine sedimentation. Two field studies from the English Channel region are presented to investigate the processes leading to quartzite formation. On Alderney, nearshore marine and fluvial facies occur interbedded on a metre scale and are interpreted to represent deposition on the lower reaches of an alluvial plain, and in beach and upper shoreface environments. The marine and fluvial sandstones display marked differences in textural and mineralogical maturity, pointing to a process of sediment maturation by the destruction of feldspar and labile grains at the shoreline. At Erquy, fully mature, marine quartzites occur bounded above and below by alluvial deposits via sharp or erosional surfaces, and are interpreted to represent high energy, storm and tidally influenced lower shoreface and inner shelf deposits. A model for quartzite development is proposed where, under a cool climate, frequent storms in un‐vegetated, tectonically rejuvenated uplands provided an abundance of arkosic sand to fluvial basins and clastic shorelines. The model proposes that the marine basins were subject to high wave energies, frequent storm events and tidal currents. These were conditions conducive to transforming arkosic sand to quartz‐rich sand by the attrition of feldspar at the shoreline and in the shallow marine environment. On sediment burial, further feldspar destruction occurred during diagenesis. The proposed model highlights the potential for a step change in sediment maturity to occur at the shoreline in early Palaeozoic depositional systems tracts.  相似文献   

15.
Shallow marine deposits comprising the Silurian Gray Sandstone Formation (GSF) exhibit pronounced process regime changes through time. The formation was deposited on the southern shelf of the Lower Palaeozoic Welsh Basin (UK), and conformably overlies the Coralliferous Formation. The basal Lithofacies Assemblage A (of Sheinwoodian age) is dominated by a storm‐dominated process regime, comprising shoreface and offshore shelf facies associations. The overlying Lithofacies Assemblage B records a mixed process regime, with units being deposited under both storm‐ and tide‐influenced conditions. Tidal‐influence prevailed during deposition of the overlying Lithofacies Assemblage C, with proximal to distal facies variations across a significant tide‐influenced river delta being observed. A return to storm‐dominated shoreface conditions is seen in the succeeding Lithofacies Assemblage D. Lithofacies Assemblage E (Homerian age) records the return of a tide‐influenced river delta to the area, prior to the conformable transition into the overlying Old Red Sandstone (ORS) Red Cliff Formation (of Ludlow age). Northward thickening of the formation across southern Pembrokeshire into the Musselwick Fault indicates a tectonic control on sedimentation, the formation infilling accommodation space developed in an intra‐shelf half‐graben. Recurring changes in process regime from storm‐ to tide‐influenced sedimentation may be related to the onset and subsequent cessation of tidal resonance in sub‐basins across the shelf area which itself was probably controlled by episodic tectonism. It is proposed that the Coralliferous and Gray Sandstone formations comprise the newly erected Marloes Group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Neogene strata of the northern part of the Pegu (Bago) Yoma Range, Central Myanmar, contain a series of shallow marine clastic sediments with stratigraphic ages ranging from the Early to Late Miocene. The studied succession (around 750 m thick) is composed of three major stratigraphic units deposited during a major regression and four major transgressive cycles in the Early to Late Miocene. The transgressive deposits consist of elongate sand-bars and broad sand-sheets that pass headward into mixed-flats of tidal environments. Marine flooding in transgressive deposits is associated with coquina beds and allochthonous coral-bearing sandy limestone bands. Major marine regressions are associated with lowstand progradation of thick estuary point-bars passing up into upper sand-flat sand bodies encased within the tidal flat sequences and lower shoreface deposits with local unconformities. The succession initially formed in a large scale incised-valley system, and was later interrupted by two major marine transgressions in the generally regressive or basinward-stepping stratigraphic sequences. Successive sandbodies were formed during a sea-level lowstand and early stage of the subsequent relative rise of sea level in a tide-dominated estuary system in the eastern part of the Central Myanmar Tertiary Basin during Early to Late Miocene times.  相似文献   

17.
Abstract Physical stratigraphy within shoreface‐shelf parasequences contains a detailed, but virtually unstudied, record of shallow‐marine processes over a range of historical and geological timescales. Using high‐quality outcrop data sets, it is possible to reconstruct ancient shoreface‐shelf morphology from clinoform surfaces, and to track the evolving morphology of the ancient shoreface‐shelf. Our results suggest that shoreface‐shelf morphology varied considerably in response to processes that operate over a range of timescales. (1) Individual clinoform surfaces form as a result of enhanced wave scour and/or sediment starvation, which may be driven by minor fluctuations in relative sea level, sediment supply and/or wave climate over short timescales (101?103 years). These external controls cannot be distinguished in vertical facies successions, but may potentially be differentiated by the resulting clinoform geometries. (2) Clinoform geometry and distribution changes systematically within a single parasequence, reflecting the cycle in sea level and/or sediment supply that produced the parasequence (102?105 years). These changes record steepening of the shoreface‐shelf profile during early progradation and maintenance of a relatively uniform profile during late progradation. Modern shorefaces are not representative of this stratigraphic variability. (3) Clinoform geometries vary greatly between different parasequences as a result of variations in parasequence stacking pattern and relict shelf morphology during shoreface progradation (105?108 years). These controls determine the external dimensions of the parasequence.  相似文献   

18.
The Haystack Mountains Formation (Campanian, Mesaverde Group, US Western Interior Basin, Wyoming) contains a series of shallow-marine sandbodies, extending tens of kilometres out from a basin margin. The study succession (around 200 m thick) is composed of eight major sandstone tongues (Bolten Ranch, O'Brien Spring, Seminoe 1–2–3–4, Hatfield 1 and 2 members), each partially encased within marine shale intervals. The Formation is ‘sequential’at several scales. At the largest scale, the whole succession presents an aggradational to basinward-stepping stacking pattern of the sandstone tongues. At a lower level, each tongue (member) is characterized internally by two different types of lithosome: the first represents shoreface progradation with hummocky cross-strata passing up to swaley and trough cross-stratified sandstones. This lithosome is erosively truncated at its top in most cases, and has a general sheet-like geometry along strike, whereas down dip it displays a series of sharp-bounded clinothems. The latter sometimes indicate a downward as well as a basinward shift through time, as suggested by the occurrence of coarser and/or shallower facies at a lower level in the shoreface profile. The second type of lithosome is sheet- or wedge-like and sharply overlies the shoreface deposits. The lithosome consists of laterally widespread units of planar tabular to trough cross-bedded medium sandstones passing laterally (in a dip direction) into bioturbated sandstones. The lower part of this lithosome is progradational, becoming retrogradational into the overlying shales. The facies within the cross-bedded lithosome suggest a tidally dominated delta front to estuarine depositional setting. The two types of lithosome are not related genetically. The erosion surface separating the two lithosomes is a sequence boundary separating forced-regressive (relative sea-level fall) shoreface deposits from lowstand to transgressive (early relative sea-level rise), cross-bedded deposits. The uppermost part of the cross-stratified lithosome shows a landward-stepping of component parasequences and is abruptly blanketed by open-marine shales. The most widespread cross-bedded lithosomes are apparently best developed in the lowermost members of the Haystack Mountains Formation, i.e. in the aggradational part of the large-scale progradational succession. In the uppermost, highly progradational sandstone tongues, the shoaling-upward shoreface lithosome dominates, whereas the cross-bedded lithosome occurs in narrow, lensoid belts, or is absent. The middle portion of the succession shows intermediate characteristics. The vertical variation in geometry, thickness and progradational extent of successive cross-bedded lithosomes results from greater confinement of the incised nearshore systems both in space (landward direction) and in time (from the aggradation to the progradation architecture). The latter is a consequence of a decreasing rate of accommodation creation through time.  相似文献   

19.
The c. 700 m thick succession of continental–brackish‐marine deposits forming the Lourinhã Formation, cropping out along the coast of western Portugal between Baleal and Santa Cruz, has been correlated using laterally persistent shelly marker beds. Three shelly units record the episodic establishment of relatively short‐lived, brackish‐marine embayments, transgressing from the southwest, onto a low‐lying coastal plain. The succession displays systematic changes in facies types and stacking patterns reflecting differences in fluvial style, bedload character and palaeontological content. Based on these observations, four new members for the Lourinhã Formation are proposed: the Sáo Bernardino, Porto de Barças, Areia Branca and Ferrel members. New biostratigraphical data indicate that the Lourinhã Formation is Late Kimmeridgian to earliest Early Tithonian in age. This age has also been obtained from the underlying mixed carbonate and clastic deposits of the Abadia Formation at Consolação. As a result, these latter sediments are now re‐assigned to the Alcobaça Formation, a lithostratigraphical term currently in use in other areas of the Lusitanian Basin. Improved regional mapping of the Lourinhã Formation has established a new sub‐basin within the western parts of the Lusitanian Basin. This sub‐basin, now named the Consolação Sub‐basin, is bounded to the east by the Lourinhã–Caldas de Rainha (L–C) fault zone and to the west by the Berlengas Horst. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Delta asymmetry occurs where there is strong wave influence and net longshore transport. Differences in the morphology and facies architecture between updrift and downdrift sides of asymmetric deltas are potentially significant for exploration and exploitation of resources in this class of reservoirs. Although delta asymmetry has been recognized widely from modern wave‐influenced deltaic shorelines, there are few documented examples in the ancient record. Based on an integrated sedimentological and ichnological study, the along‐strike variability and delta asymmetry within a single parasequence (Ps 6) is documented in continuously exposed outcrops of the Cretaceous Ferron Sandstone Member of the Mancos Shale Formation near Hanksville in southern Utah. Two intra‐parasequence discontinuity surfaces are recognized which allow subdivision of the parasequence into three bedsets, marked as Ps 6‐1 to Ps 6‐3. Four facies successions are recognized: (i) wave/storm‐dominated shoreface; (ii) river‐dominated delta front; (iii) wave/storm‐reworked delta front; and (iv) distributary channel and mouth bar. Dips of cross‐strata within distributary‐mouth bars and shorefaces show a strong downdrift (southward) component. Ps 6‐3 predominantly consists of river‐dominated delta‐front deposits, whereas Ps 6‐1 and Ps 6‐2 show an along‐strike facies change with shoreface deposits in the north, passing into heterolithic, river‐dominated delta‐front successions south to south‐eastward, and wave/storm‐reworked delta‐front deposits further to the south‐east. Trace fossil suites correspondingly show distinct along‐strike changes from robust and diverse expressions of the archetypal Cruziana Ichnofacies and Skolithos Ichnofacies, into suites characterized by horizontal, morphologically simple, facies‐crossing ichnogenera, reflecting a more stressed, river‐dominated environment. Further south‐eastward, trace fossil abundance and diversity increase, reflecting a return to archetypal ichnofacies. The overall facies integrated with palaeocurrent data indicate delta asymmetry. The asymmetric delta consists of sandier shoreface deposits on the updrift side and mixed riverine and wave/storm‐reworked deposits on the downdrift side, similar to that observed in the modern examples. However, in contrast to the recent delta asymmetry models, significant paralic, lagoonal and bay‐fill facies are not documented in the downdrift regions of the asymmetric delta. This observation is attributed to a negative palaeoshoreline trajectory during delta progradation and subsequent transgressive erosion. The asymmetric delta was induced by net longshore transport from north to south. The forced regressive nature of the delta precludes significant preservation of topset mud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号