首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
冯凯  蒋大鸣 《上海金属》1991,13(5):50-53
本文通过不同温度亚温淬火及回火,在15号钢中得到具有不同体积百分比及不同强度比的铁素体马氏体双相组织,并研究了这些组织对铜的力学性能及断裂过程的影响。结果表明:力学性能与双相钢中的马氏体数量及马氏体强度有关。  相似文献   

2.
Nb和Cr对冷轧低碳低硅双相钢组织性能的影响   总被引:2,自引:0,他引:2  
研究了在不同双相处理工艺条件下加Nb(0.033%)和加Cr(0.44%)两种低碳低硅冷轧双相钢的组织演变规律和性能特点。分析了合金元素Cr和Nb对双相组织中马氏体体积分数、马氏体形态和铁素体晶粒尺寸的影响。结果表明,Nb的作用主要是通过NbC粒子的析出阻碍再结晶晶粒的长大,从而在同样较低温度热处理工艺条件下,加Nb双相钢中的铁素体晶粒较细。随着处理温度的升高,当相变先于再结晶发生时,NbC对细化晶粒的作用不明显,因而加Nb和加Cr钢具有相近的铁素体晶粒尺寸。Cr提高奥氏体形成温度,导致双相处理时奥氏体的体积分数以及淬火后马氏体的体积分数的减少。力学性能分析表明,在同样的双相处理条件下,加Nb钢具有较高的强度和较低的屈强比;而加Cr钢则表现出较好的塑性。  相似文献   

3.
基于“材料素化”的理论,以普通低碳钢为原材料,引入异质结构的微观设计理念,通过循环退火+亚临界淬火的热处理工艺制备马氏体包裹铁素体的网状异构组织双相钢,观察并研究了马氏体分布形貌以及马氏体体积分数对试验钢拉伸力学性能的影响。结果表明:网状马氏体-铁素体异构组织双相钢在室温下的拉伸强度可达1084.15~1392.24 MPa,总伸长率为7.47%~8.94%,并且兼具较低的屈强比。采用Hollomon、DC-J(Differential Crussard-Jaoul)、修正MC-J(Modified C-J)三种分析模型研究了试验钢的应变硬化特性和不同阶段的应变硬化机制。结果表明双相钢的加工硬化指数与其结构特征息息相关,MC-J分析模型相较于其他两种模型,对双相钢的加工硬化更为敏感,具有三级变形行为。在准静态室温拉伸下,网状异构双相钢具有良好的加工硬化能力,随着马氏体体积分数的增加,双相钢中硬质相马氏体可以更早地发生塑性变形。  相似文献   

4.
铁素体/马氏体双相钢的组织及性能   总被引:1,自引:1,他引:0  
采用金相显微镜、SEM等试验方法,研究了中碳铁素体/马氏体双相钢的组织及性能。结果表明:在785~800℃淬火,起始组织为铁素体加珠光体的A型组织钢和起始组织为马氏体的B型组织钢随两相区淬火温度的升高强度升高;原始组织不同两相区淬火后钢的组织及性能不同,经785℃×30 min淬火的B型组织钢强度明显高于A型组织钢,经800℃×30 min淬火的B型组织钢伸长率和断面收缩率高于A型组织钢;785℃保温10 min淬火的B型组织钢相比于A型组织钢奥氏体化过程加速,钢的强度及塑性均好于A型组织钢;两相区淬火具有双相组织的钢具有连续屈服和快速应变硬化现象及低的屈强比,785℃×30 min两相区处理的钢与调质处理的钢相比塑性低但强度明显提高,785℃×10 min两相区处理的B型组织钢强度略低于调质钢,但塑性略有增加。  相似文献   

5.
对试验钢进行了不同的两相区直接淬火+回火处理。对试样显微组织进行了观察,并对力学性能进行了检测,研究了淬火温度和回火温度对试验钢组织和性能的影响。结果表明,钢板回火显微组织以多边形铁素体+岛状回火马氏体为主。随着直接淬火温度的升高,回火马氏体含量增加,铁素体含量减少,组织中少量珠光体逐渐转变为贝氏体;屈服强度和抗拉强度均升高,屈强比先保持恒定后有所升高,伸长率逐渐下降,冲击功则是先大幅降低后几乎不变。当回火温度低于400℃时,马氏体形态没有明显改变;当回火温度超过500℃时,马氏体岛开始分解,碳化物析出量增加。随着回火温度升高,抗拉强度几乎呈线性降低,屈服强度则先升高后降低,屈强比升高,伸长率和冲击功先下降后提高。  相似文献   

6.
文章选用本钢生产的DP590冷硬板,根据实际生产机组的参数,采用热模拟实验对比分析镀前、后形成马氏体和退火工艺对热镀锌双相钢的组织及性能的影响,实验表明:镀后形成马氏体更有利于降低双相钢的屈强比;结合热模拟实验研究不同温度制度对双相钢组织性能的影响,确定最佳的温度组合。  相似文献   

7.
高马氏体含量双相钢组织及变形研究   总被引:1,自引:1,他引:0  
采用不同的两相区温度保温和盐水淬火处理,在实验室条件下得到不同马氏体含量的含钒双相钢。利用扫描电子显微镜对不同马氏体含量的试样的断口和断口侧面分析,发现在高马氏体含量下,双相钢变形和断裂与马氏体含量和组织形态有关,且其均匀变形阶段的应变硬化指数n值及应变硬化速率也会随着马氏体含量的增加而显著升高。而加入钒,其碳化物弥散分布在铁素体中,增强了双相钢的应变硬化能力,提高了双相钢的力学性能。  相似文献   

8.
采用双相区(α+γ)轧制及双相区短时保温处理相结合的方式,制备了一种高强高韧性低碳低合金铁素体/马氏体双相钢,并采用SEM、室温拉伸试验和维氏硬度检测等手段研究了不同轧制工艺对铁素体/马氏体双相钢组织和性能的影响。结果表明:相对于普通的连续轧制工艺,等温轧制和道次之间短时保温处理相结合的工艺对铁素体/马氏体双相钢的相比例、形貌和尺寸有重要影响。等温轧制及短时保温处理的双相钢的组织明显细化,马氏体相比例增加,组织均匀性显著改善,屈服强度提升了34%,达到1229 MPa,屈强比高达0.78,断口为韧性断口特征,呈细小韧窝状,具有良好的综合力学性能。  相似文献   

9.
研究了铜含量以及热处理工艺对9%Ni钢屈强比的影响。采用光学显微镜(OM)、扫描电镜(SEM)观察了钢的组织特征,测试了钢的拉伸性能、硬度以及晶粒度。结果表明,经淬火+两相区淬火+回火(QLT)处理,随着Cu含量(0~1.5%)的增加,钢中马氏体量增加,铁素体量减少,同时还可细化晶粒,而且可能造成强烈的第二相强化,三者共同作用导致的屈强比增加。QLT处理较常规热处理可显著降低钢的屈强比,9%Ni钢中添加适量铜有利于钢强度及屈强比的匹配。  相似文献   

10.
采用光学显微镜、扫描电镜、纳米力学探针、透射电镜等技术对不同Si含量(0.03%和1.077%)的DP600级别热轧双相钢单向拉伸过程组织特征进行研究,分析了Si含量对相同工艺条件下双相钢显微组织特征,以及塑性变形过程中强化相与基体协调变形行为的影响。结果表明:Si作为一种铁素体形成元素,能够增加铁素体的形核率,具有细化铁素体晶粒的作用,可增加铁素体体积分数,分割并细化马氏体。Si含量的增加促进了C元素向马氏体富集,提升了单位体积马氏体的碳含量,使部分板条马氏体转变为孪晶马氏体,增加了马氏体硬度。由于Si对铁素体的净化作用,高Si实验钢中位错在铁素体中滑移时不易受到碳化物的钉扎作用。因此在相同工艺条件下,Si含量的增加可以提高双相钢的抗拉强度,提高硬度,降低屈强比。  相似文献   

11.
通过热轧和模拟超快冷试验,试制出780 MPa级热轧双相钢,研究了马氏体的含量、形貌、分布对热轧双相钢力学性能和n值的影响。结果表明,试验钢经850℃终轧后,组织为铁素体+马氏体,抗拉强度853 MPa,屈服强度464 MPa,屈强比0.54,伸长率19.5%,n值0.14,达到热轧DP780性能要求。在高马氏体含量下(28.2%),随着马氏体含量的增加,组织中的马氏体由弥散分布的片状马氏体逐渐转变为连续的板条状马氏体,马氏体的尺寸逐渐增加;而多边形铁素体部分转变为准多边形铁素体,铁素体尺寸逐渐减小。热轧双相钢的强度和屈强比逐渐提高,而伸长率和n值逐渐降低。  相似文献   

12.
基于合金减量化原则,采用以超快冷技术为核心的新一代TMCP技术制备了1200 MPa级热轧双相钢,研究了弛豫时间对试验钢组织和性能的影响。研究表明:随着弛豫时间增加,试验钢铁素体晶粒尺寸和体积分数均增加,屈服强度降低,伸长率均在10.0%以上;组织中马氏体均以块状马氏体为主,并由块状向小岛状转变,其体积分数减少,抗拉强度降低,屈强比减小,n值增加。弛豫时间影响到铁素体和马氏体的体积分数及内部结构。弛豫9 s的试验钢,铁素体体积分数为44.2%,铁素体晶粒尺寸为3.4μm,组织中块状马氏体中板条束条宽细化至0.3μm及较多的小岛状马氏体有利于n值,抗拉强度达到1258 MPa,伸长率为12.0%,屈强比最低为0.55,n值高达0.13,其综合性能最好。  相似文献   

13.
采用控轧+两相区淬火+回火(TMCP+ Q'+T)工艺制备了690 MPa级低屈强比高强度结构钢,重点研究了两相区淬火温度和回火温度对实验钢组织性能的影响.结果表明,随着两相区淬火温度的升高,实验钢中铁素体相体积分数减少,铁素体的形貌由多边形转变为针片状且更加细小均匀,马氏体相的体积分数逐渐增加,尺寸变大,但实验钢的力学性能并未出现明显的变化;随着回火温度升高,实验钢中针片状的铁素体发生回复再结晶,马氏体发生分解,实验钢的塑性和韧性提高,但强度降低,屈强比升高.  相似文献   

14.
利用光学显微镜、拉伸试验机等研究了不同淬回火工艺对20MnSi钢显微组织与力学性能的影响。结果表明:经920℃淬火后,20MnSi试验钢的组织为板条状马氏体。当淬火温度升高到960℃时,组织中马氏体发生粗化。在840~960℃,随着淬火温度的升高,试验钢强度先升高后降低,920℃淬火试验钢的强度达到最大值。在420~620℃,随着回火温度的升高,试验钢的强度、屈强比逐渐降低,伸长率逐渐升高。经920℃淬火+420℃回火处理的20MnSi钢强度达到900 MPa,伸长率、屈强比满足使用要求,为理想的淬回火工艺。  相似文献   

15.
对10CrMnMo双相钢在不同亚温淬火温度下热处理后的试样进行了显微组织、SEM形貌、显微硬度测试、马氏体含量以及马氏体-铁素体两相的晶粒尺寸分析。结果表明,不同的淬火温度致使马氏体和铁素体的显微形态和分布状况发生变化,淬火温度为720 ℃时马氏体呈狭长的岛状分布,随着淬火温度的升高,马氏体呈片状与岛状共存,到820 ℃时板条马氏体与铁素体呈纤维状共存;同时,马氏体体积分数也随之增加,由720 ℃淬火时的10.41%增加到820 ℃时的48.19%;马氏体、铁素体的晶粒大小都随着淬火温度的升高而减小,铁素体晶粒尺寸由720 ℃淬火时的14.23 μm减小到820 ℃时的4.15 μm,马氏体尺寸则由5.74 μm减小至2.45 μm,且不同淬火温度下铁素体晶粒尺寸均大于马氏体晶粒尺寸;双相钢中铁素体组织的显微硬度随着淬火温度的升高而增加,由720℃时的168.21 HV1增加至820 ℃时的235.15 HV1;马氏体组织的显微硬度则随淬火温度的升高而降低,由720 ℃时的713.14 HV1降低到820 ℃时的525.41 HV1。  相似文献   

16.
对10CrMnMo双相钢在不同亚温淬火温度下热处理后的试样进行了显微组织、SEM形貌、显微硬度测试、马氏体含量以及马氏体-铁素体两相的晶粒尺寸分析。结果表明,不同的淬火温度致使马氏体和铁素体的显微形态和分布状况发生变化,淬火温度为720℃时马氏体呈狭长的岛状分布,随着淬火温度的升高,马氏体呈片状与岛状共存,到820℃时板条马氏体与铁素体呈纤维状共存;同时,马氏体体积分数也随之增加,由720℃淬火时的10.41%增加到820℃时的48.19%;马氏体、铁素体的晶粒大小都随着淬火温度的升高而减小,铁素体晶粒尺寸由720℃淬火时的14.23μm减小到820℃时的4.15μm,马氏体尺寸则由5.74μm减小至2.45μm,且不同淬火温度下铁素体晶粒尺寸均大于马氏体晶粒尺寸;双相钢中铁素体组织的显微硬度随着淬火温度的升高而增加,由720℃时的168.21HV1增加至820℃时的235.15HV1;马氏体组织的显微硬度则随淬火温度的升高而降低,由720℃时的713.14HV1降低到820℃时的525.41HV1。  相似文献   

17.
利用力学性能测试、光学显微镜、扫描电镜观察等方法分析了不同规格调质态12MnNiVR储罐钢显微组织对屈强比的影响。试验结果表明,12MnNiVR钢板淬火后主要组织为马氏体+部分针状铁素体/贝氏体铁素体,18 mm薄规格钢板的针状铁素体体积分数在10%~15%,而33.5 mm厚规格钢板的针状铁素体体积分数可以达到40%以上。通过优化薄规格钢板淬火冷速、淬火温度、回火温度等工艺参数,提高薄规格钢板针状铁素体体积分数,能够降低薄规格钢板屈强比。  相似文献   

18.
实验室真空感应炉冶炼C-Mn钢、Nb-Ti钢和含Cr钢,轧后采用三段式冷却工艺试制低成本热轧双相钢,分析了成分差异对热轧双相钢组织性能的影响。结果表明,三种成分均可得到铁素体和马氏体双相组织;三者比较而言,C-Mn钢的铁素体含量较高,塑性好,但强度级别低;由于Nb-Ti钢中微合金元素Nb的固溶拖曳作用抑制相变,铁素体含量低,但细晶强化作用提高了钢板的屈服强度,屈强比增加;含Cr钢显微组织中马氏体含量最高,抗拉强度随之增高,屈强比较Nb-Ti钢降低。  相似文献   

19.
研究了不同热处理状态下低碳硅-铌双相钢的显微组织形态及其对力学性能的影响.结果表明:米用双重淬火和临界区淬火,可在830~960℃获得铁素体+纤维状或岛状马氏体双相组织;马氏体中的亚结构为位错型和孪晶型共存.纤维状双相组织由于两相界面较宽,具有更为理想的强塑性配合,可直接冷拔成钢丝.临界区淬火的双相钢冷拔成钢丝后,经300℃充分回火,在保持一定强度的同时,塑性得以进一步改善.  相似文献   

20.
基于合金减量化原则,采用以超快冷技术为核心的新一代TMCP技术制备了600 MPa级热轧双相钢,研究了弛豫时间对试验钢组织性能的影响。研究表明:随着弛豫时间增加,试验钢铁素体晶粒尺寸和体积分数均增加,屈服强度降低,伸长率增加;组织中马氏体均以长条马氏体为主,并由块状向小岛状转变,其体积分数减少,抗拉强度降低;屈强比先减小后增加,n值先增加后减小。弛豫时间对铁素体和马氏体的体积分数及内部结构有影响。8 s弛豫的试验钢,组织中大量的长条马氏体及两相间较宽的过渡区提高了材料的位错密度和均匀变形能力,其铁素体体积分数为82.2%,铁素体晶粒尺寸为5.1μm,抗拉强度达到625MPa,伸长率为27.0%,屈强比最低为0.56,n值高达0.20,综合性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号