首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Bismuth-layer-structured ferroelectric thin films, SrBi2Ta2O9 and Bi4Ti3O12, have been prepared by laser ablation method on both Pt sheets and Si wafers at low temperatures of 400 ~ 500°C. These thin films have been characterized by XRD, XPS, AFM, C-V, D-E hysteresis and J-V measurement. SrBi2Ta2O9 thin films have a good (105) preferential orientation, and Bi4Ti3O12 thin films have (117) and c-axis orientation on these substrates. Ferroelectric film-SiO2-Si structures show good C-V hysteresis curve owing to Si surface potential controlled by the D-E hysteresis. D-E hysteresis is obtained in Bi4Ti3O12 thin film prepared on Pt sheet, and the remnant polarization and the coercive force are 7.5 μC/cm2 and 72 kV/cm, respectively.  相似文献   

2.
Epitaxial (Bi,La)4Ti3O12 (BLT) thin films, epitaxial Pb(Zr,Ti)O3 (PZT) thin films, and epitaxial multilayered BLT/PZT ferroelectric thin films with different orientations were prepared on SrTiO3 (STO) single crystal substrates by pulsed laser deposition. From X-ray pole-figures and electron diffraction patterns, the epitaxial orientation relationships between BLT layers, PZT layers, and STO substrates were identified to be (1) BLT(001)//PZT(001)//STO(001), and BLT[110]//PZT[100]//STO[100] for the multilayered thin films on (001)-oriented STO substrates, and (2) BLT(118)//PZT(011)//STO(011), and $ {\text{BLT}}{\left[ {\overline{1} \overline{1} 0} \right]}//{\text{PZT}}{\left[ {100} \right]}//{\text{SrTiO}}_{3} {\left[ {100} \right]} $ for the multilayered films on (011)-oriented STO substrates. Tri-layered films of the same compositions showed well-defined hysteresis loops as well as a high fatigue resistance up to 1?×?1010 switching cycles.  相似文献   

3.
Comparative studies on the electrical properties of a metal-ferroelectric-insulator-semiconductor field effect transistor were conducted using pulsed laser ablated ferroelectric Bi3.25La0.75Ti3O12 (BLT) thin films deposited on SiO2/Si substrates with different SiO2 thicknesses. The SiO2 layer was prepared on n-type Si substrates by dry oxidation at a temperature of 800°C. Small angle x-ray reflectivity studies were used to measure the SiO2 thickness. The capacitance-voltage (C-V) measurements revealed that the films showed good interfacial properties. Shifts in flatband voltages were observable, but were effectively reduced by deposition of the ferroelectric films. Au/BLT/SiO2/Si diodes with 8 nm SiO2 layer showed to be stable with relatively large memory window values of about 0.3 V, 2.5 V, 5.0 V, and 7.0 V, at increasing bias voltages of ±5 V, ±7 V, ±10 V, and ±12 V, respectively.  相似文献   

4.
The phase formation and electrical properties of (Bi, La)4Ti3O12 (BLT) thin film and V-, Sm-doped BLT thin films prepared by the chemical solution deposition method on Pt/TiO2/SiO2/Si substrates have been investigated. It was observed that the microstructure and electrical properties of BLT thin films dramatically varied with V- and Sm-doping. The crystallinity and grain size of BLT thin films were definitely increased by V- and Sm-doping into BLT films, which resulted in the enhancement of remanent polarization in doped BLT films. The remanent polarization (Pr) of Sm-doped BLT films annealed for 3 min by an RTA system was about 9 C/cm2. The V- and Sm-doped BLT films also exhibited good fatigue characteristics under bipolar stressing to 1010 cycles.  相似文献   

5.
Ferroelectric properties of samarium substituted Bi4Ti3O12 films, Bi3.15Sm0.85Ti3O12 (BST), were evaluated for use as lead-free thin film ferroelectrics for FeRAM applications. The BST films were fabricated on the Pt/Ti/SiO2/Si(100) substrates by a metalorganic solution deposition method. The measured XRD patterns revealed that the BST films showed only a Bi4Ti3O12-type phase with a random orientation. The BST film capacitors showed excellent ferroelectric properties. For the film capacitor annealed at 700C, 2Pr of 64.2 C/cm2 and 2Ec of 101.7 kV/cm at applied electric field of 150 kV/cm were observed. The capacitor did not show any significant fatigue up to 1.5 × 108 read/write switching cycles at a frequency of 1 MHz, which suggests that the samarium should be considered for a promising lanthanide elements to make a good thin ferroelectric film for memory applications.  相似文献   

6.
Bilayered ferroelectric thin films consisting of Pb(Zr0.52Ti0.48)O3 (PZT) and (Bi3.15Nd0.85)Ti3O12 (BNT) have been successfully synthesized on Pt/Ti/SiO2/Si substrates, via a combined sol–gel and rf-sputtering route. Their ferroelectric and dielectric properties are critically dependent on the phases present, film texture and in particular layer and film thicknesses. Due to the coupling of PZT and BNT bilayers, there requires an optimized thickness combination of the two ferroelectric layers, in order to give rise to the wanted ferroelectric and dielectric properties, while the phenomenon can not be accounted for by the simple series connection model.  相似文献   

7.
We fabricated MFIS (metal-ferroelectric-insulator-semiconductor) diodes with ((Bi,La)4Ti3O12: BLT) films and lanthanum silicate (La2SiO5: LSO)-added BLT films formed on LaAlO3/Si(100) structures. LaAlO3 films were prepared by an MBD (molecular beam deposition) method. After the film deposition, they were subjected to ex site N2 annealing in a rapid thermal annealing (RTA) furnace at 800°C for 1 min. BLT films and LSO-added BLT films were deposited on these LaAlO3/Si structures using a sol-gel technique. The memory windows of BLT and LSO-added BLT films were 3.0 V and 2.1 V, respectively. It was found from the current density-voltage (I-V) characteristics that the insulation property of the LSO-added BLT film was superior to that of the BLT film. We conclude from these results that LaAlO3 is an excellent candidate of a buffer layer for forming ferroelectric-gate FETs and that the LSO-added BLT film is suitable for low voltage operation of the FETs.  相似文献   

8.
Abstract

Sputtered Pb(ZrxTi1?x)O3 thin films with various (Zr/Ti) compositions ranging from 15/85 to 70/30 were grown and characterised in terms of structural and electrical properties. PZT thin films, with 0.7–0.8μm thickness, were deposited on Si/SiO2/Ti/Pt by sputtering followed by conventional annealing. The sputtering conditions were the same for all the compositions. There were no apparent differences in crystallographic orientation as a function of Zr/Ti and the films a-lattice constant evolution is not exactly identical to the one of bulk ceramics. The permittivity increases when the Zr concentration increases and decreases just after the mor-photropic composition i.e. Zr-rich films. The ferroelectric properties are very sensitive to the Zr/Ti ratio. For example, the coercive field increases when the Ti concentration in the film increases.  相似文献   

9.
Bismuth titanate Bi4Ti3O12 thin films were prepared on LaAlO3(012) substrates by a spin coating-pyrolysis process using metal naphthenates as starting materials. The c-axis oriented Bi4Ti3O12 thin films, which contained no second phases as –2 scans, were obtained by heat-treatment in air at temperatures of 600°C and above. X-ray diffraction pole-figure analysis showed that the Bi4Ti3O12 thin film has an epitaxial relationship with the LaAlO3 substrate.  相似文献   

10.
Abstract

Ferroelectric Bi4Ti3O12 thin films were deposited on Pt-coated oxidized Si substrate by electron cyclotron resonance (ECR) sputtering using ceramic targets. Crystal structure and dielectric properties of the films were investigated as functions of sputtering conditions such as substrate temperature and sputtering gas. Using a target with excess Bi content compared to stoichiometric composition was required to compensate Bi re-evaporation from the substrate and to obtain a perovskite single phase at 600°C. (117)-oriented films exhibited ferroelectric hysteresis loops. The remanent polarization and coercive field of the films were 9.8 μC/cm2 and 180 kV/cm, respectively.  相似文献   

11.
Abstract

Pb(Zh x , Ti1-x )O3(PZT) thin films were deposited on Si substrates using MgTiO3 as the buffer layer and the electrical properties of those MFIS structures were investigated. PZT and MgTiO3 films were made by MOCVD using ultrasonic spraying technique. Perovskite PZT films have been succesfully made at the substrate temperature of 550 to 600°C only when using MgTiO3 buffer layer. AES depth profile analysis and RBS analysis revealed that there is no remarkable interdiffusion and no formation of reaction layer between PZT and MgTiO3 and/or between MgTiO3 and Si substrate. The capacitance-voltage (C-V) curves of the MFIS structure which were made with PZT and MgTiO3buffer layer have shown the hysteresis resulted from the ferroelectric switching of the PZT films.  相似文献   

12.
We propose the “Flux-mediated epitaxy” as a novel concept for the growth of single crystalline films of incongruent, volatile, and high-temperature-melting compounds. In flux-mediated eptitaxy, by supplying materials precursors from the gas phase through the liquid flux films pre-deposited on the substrate, a quasi-thermodynamic equilibrium condition is obtained at the interface between the growing films and the flux films. This process has been demonstrated in this paper by fabricating ferroelectric Bi4Ti3O12 films, which has volatile Bi oxide. The most important step in this process is the selection of the right flux material, which is hard to predict due to the lack of an appropriate phase diagram. In order to overcome this problem, we have selected the combinatorial approach. A series of ternary flux libraries composed of two self-fluxes (Bi2O3 and Bi4Ti3O12) and a third impurity flux were fabricated on SrTiO3 (001) substrates. After that, stoichiometric Bi4Ti3O12 films were grown on each of these flux libraries at a temperature presumed to melt the flux. High-throughput characterization with the concurrent X-ray diffraction method resulted in the identification of CuO containing Bi2O3 as the flux material for the growth of single crystalline Bi4Ti3O12 films. Stoichiometric Bi4Ti3O12 films fabricated by using a novel CuO containing Bi2O3 are qualified to be single crystalline judging from their large grain size and the electrical properties equivalent to bulk single crystal’s.  相似文献   

13.
The phase formation and electrical properties of (Bi3.15La0.85)Ti3O12 (BLT) thin films prepared by the chemical solution deposition method on Pt/Ti/SiO2/Si substrates have been investigated. It was observed that the microstructure and electrical properties of BLT thin films dramatically varied with the excess Bi content. The crystallographic orientation of BLT films was varied with excess Bi content and the intermediate rapid thermal annealing (RTA) process. While BLT thin films prepared without intermediate RTA process have ?117? orientation irrespective of excess Bi content, BLT thin films with RTA process at 450°C have an orientation change with excess Bi content. The leakage current of BLT thin films slightly increased with increasing excess Bi content up to 6.5% and then considerably decreased in BLT film with 10% Bi, where was revealed to be almost stoichiometric composition.  相似文献   

14.
Ferroelectric Si-doped (Bi,Nd)4Ti3O12 thin films have been prepared on Pt/TiOx/SiO2/Si substrates through metal-organic compounds by the chemical solution deposition. The Bi3.25Nd0.75Ti2.9Si0.1O12 (BNTS) precursor films were found to crystallize into the Bi-layered perovskite Bi4Ti3O12 single-phase above 600C. The synthesized BNTS films revealed a random orientation having a strong 117 reflection. The BNTS thin films prepared between 600C and 700C showed well-saturated P-E hysteresis loops with P r of 13–14 μ C/cm2 and E c of 100–110 kV/cm at an applied voltage of 5 V. The surface roughness of the BNTS thin films was improved by Si doping compared with that of undoped Bi3.35Nd0.75Ti3O12 films.  相似文献   

15.
Thin films of neodymium-modified bismuth titanate Bi3.44Nd0.56Ti3O12 (BNT) were grown on Pt/TiO2/SiO2/Si substrates using chemical solution deposition method. The capacitors made by applying top Au electrodes on BNT films showed significantly improved values of the remanent polarization as compared to that using bismuth titanate Bi4Ti3O12 (BT) films. The 2P r value for the BNT capacitors was determined to be equal to 38 C/cm2 at an applied voltage of 24 V, whereas, for Bi4Ti3O12 (BT) capacitors a value of 20 C/cm2 was measured at the same applied voltage. The maximum piezoelectric and pyroelectric coefficients of 22 pm/V and 112 C/m2 K respectively, were measured for the BNT thin films.  相似文献   

16.
《Integrated ferroelectrics》2013,141(1):1257-1264
PZT thin films are deposited on SiO2/Si substrate by metallo-organic decomposition (MOD) process, using SrTiO3 (STO) as buffer layer for textured growth. The STO layers deposited on SiO2/Si substrate by pulsed laser deposition process show (100)/(200) preferred orientation, whereas the STO buffer layer deposited on silica substrate using spin-coating technique show random orientation behavior. The use of STO as buffer layers enhanced the crystallization and the preferred orientations of the PZT films. The PZT on STO buffered SiO2/Si substrates thus obtained possess high refractive index, (n)PZT/STO = 2.1159, and are of good enough quality for optical waveguide applications.  相似文献   

17.
《Integrated ferroelectrics》2013,141(1):1233-1240
(100) textured Pb(Zr0.48Ti0.52)O3 (PZT) films were prepared on silicon substrates by MOD process and laser lift-off technique. Textured PZT films were first grown on (001) Sapphire substrate, using Ba(Mg1/3Ta2/3)O3 (BMT) materials as buffer layer. The (100) textured PZT/BMT/Sapphire films were attached to Si substrate using a transient-liquid-phase Pd-In bonding process, and then were separated from Sapphire substrates by a laser lift-off process, in which, a 38 ns pulse from excimer laser (248 nm) at 600 mJ/cm2 fluence melted BMT buffer layer, expelling the Sapphire. The crystallinity of the surface of films was further improved by laser annealing. X-ray diffraction analysis of the PZT films showed that the crystallographic structure of films is maintained during laser lift-off process. Electrical testing of the films after laser lift-off process followed by laser annealing demonstrated that the ferroelectric properties are retained for the transferred films (Pr = 9μ C/cm2 and Ec = 74 kV/cm).  相似文献   

18.
Bi4Ti3O12 thin films are deposited on ITO/glass and Pt/Ti/Si(100) substrates by R.F. magnetron sputtering at room temperature. The films are then heated by a rapid thermal annealing (RTA) process conducted in oxygen atmosphere at temperatures ranging from 550–700C. X-ray diffraction examination reveals that the crystalinity of the films grown on Pt/Ti/Si is better than that of the films grown on ITO/glass under the same fabrication conditions. SEM observation shows that the films grown on Pt/Ti/Si are denser than those grown on ITO/glass substrates. Interactive diffusion between the Bi4Ti3O12 film and the ITO film increases with the increase of annealing temperature. The optical transmittance of the thin film annealed at 650C is found to be almost 100% when the effect of the ITO film is excluded. The relative dielectric constants, leakage currents and polarization characteristics of the two films are compared and discussed.  相似文献   

19.
We demonstrate the ferroelectric behavior of (Bi,La)4Ti3O12 (BLT) films deposited on Si(100) substrates by using LaAlO3 buffer layers. LaAlO3 films were prepared by molecular beam deposition method. Then, they were subjected to ex situ dry N2 annealing in a rapid thermal annealing furnace. From the capacitance-voltage measurement, the dielectric constant of LaAlO3 was estimated to be 20 to 26. On these structures, BLT films were deposited by sol-gel method and they were characterized by X-ray diffraction analysis. It was found from capacitance-voltage measurements that the characteristics showed a hysteresis loop and the memory window was about 0.5 V for the voltage sweep of ±9 V. It was also found from the retention measurement that the higher and lower capacitance values in the hysterisis loop could be distinguished at least for 3 days. It is concluded from these results that the BLT/LaAlO3/Si(100) structure is one of the most promising structures for realizing MFISFETs (metal-ferroelectric-insulator-semiconductor field effect transistors).  相似文献   

20.
The paper reports on synthesis, sintering and microstructure of Bi2/3Cu3Ti4O12, a lead-free, high-permittivity material with internal barrier layer capacitor behavior. Complex impedance and capacitance of the ceramic and thick films were studied as a function of frequency (10 Hz–2 MHz) and temperature (−170 to 400°C). Dc electrical conductivity of the samples was measured in the temperature range 20–400°C. Broad and high maxima of dielectric permittivity versus temperature plots were observed reaching 60,000 for ceramic and 5,000 for thick films. The maxima decrease and shift to higher temperatures with increasing frequency. Two arcs ascribed to grains and grain boundaries were found in the plots of imaginary part versus real part of impedance. Analysis of the impedance spectra indicates that Bi2/3Cu3Ti4O12 ceramic could be regarded as electrically heterogeneous system composed of semiconducting grains and less conducting grain boundaries. The developed thick film capacitors with dielectric layers based on Bi2/3Cu3Ti4O12 exhibit dense microstructure, good cooperation with Ag electrodes, high permittivity up to 5,000 and relatively low temperature coefficient of capacitance in the temperature range 100–300°C. Broad maxima in the dielectric permittivity versus temperature curves may be attributed to Maxwell–Wagner relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号