首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome f from the photosynthetic cytochrome b(6)f complex is unique among c-type cytochromes in its fold and heme ligation. The 1. 9-A crystal structure of the functional, extrinsic portion of cytochrome f from the thermophilic cyanobacterium Phormidium laminosum demonstrates that an unusual buried chain of five water molecules is remarkably conserved throughout the biological range of cytochrome f from cyanobacteria to plants [Martinez et al. (1994) Structure 2, 95-105]. Structure and sequence conservation of the cytochrome f extrinsic portion is concentrated at the heme, in the buried water chain, and in the vicinity of the transmembrane helix anchor. The electrostatic surface potential is variable, so that the surface of P. laminosum cytochrome f is much more acidic than that from turnip. Cytochrome f is unrelated to cytochrome c(1), its functional analogue in the mitochondrial respiratory cytochrome bc(1) complex, although other components of the b(6)f and bc(1) complexes are homologous. Identical function of the two complexes is inferred for events taking place at sites of strong sequence conservation. Conserved sites throughout the entire cytochrome b(6)f/bc(1) family include the cluster-binding domain of the Rieske protein and the heme b and quinone-binding sites on the electrochemically positive side of the membrane within the b cytochrome, but not the putative quinone-binding site on the electrochemically negative side.  相似文献   

2.
The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.  相似文献   

3.
The binding of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to chloroplast thylakoid membranes was investigated by analyzing the inhibition of electron transfer by DBMIB according to a steady-state rate relationship for enzyme-catalyzed reactions in the presence of tightly binding reversible inhibitors. DBMIB interacts with the cytochrome b6f complex in a manner best described by an apparent dissociation constant near 6 nM. The binding site titer is 1 mmol X mol chlorophyll-1. This number of DBMIB binding sites approaches one-half the number of cytochrome b6f complexes present in the membrane. These data suggest that the cytochrome b6f complex may function in electron transfer as a dimer, plastoquinol oxidation being totally inhibited by the binding of a single DBMIB molecule to the dimer.  相似文献   

4.
The small chloroplast open reading frame ORF43 (ycf7) of the green unicellular alga Chlamydomonas reinhardtii is cotranscribed with the psaC gene and ORF58. While ORF58 has been found only in the chloroplast genome of C.reinhardtii, ycf7 has been conserved in land plants and its sequence suggests that its product is a hydrophobic protein with a single transmembrane alpha helix. We have disrupted ORF58 and ycf7 with the aadA expression cassette by particle-gun mediated chloroplast transformation. While the ORF58::aadA transformants are indistinguishable from wild type, photoautotrophic growth of the ycf7::aadA transformants is considerably impaired. In these mutant cells, the amount of cytochrome b6f complex is reduced to 25-50% of wild-type level in mid-exponential phase, and the rate of transmembrane electron transfer per b6f complex measured in vivo under saturating light is three to four times slower than in wild type. Under subsaturating light conditions, the rate of the electron transfer reactions within the b6f complex is reduced more strongly in the mutant than in the wild type by the proton electrochemical gradient. The ycf7 product (Ycf7) is absent in mutants deficient in cytochrome b6f complex and present in highly purified b6f complex from the wild-type strain. Ycf7-less complexes appear more fragile than wild-type complexes and selectively lose the Rieske iron-sulfur protein during purification. These observations indicate that Ycf7 is an authentic subunit of the cytochrome b6f complex, which is required for its stability, accumulation and optimal efficiency. We therefore propose to rename the ycf7 gene petL.  相似文献   

5.
The availability of the structures of the cytochrome b6f complex (cyt b6f), plastocyanin (PC), and cytochrome c6 (cyt c6) from Chlamydomonas reinhardtii allowed us, for the first time, to model electron transfer interactions between the luminal domains of this complex (including cyt f and the Rieske FeS protein) and its redox partners in the same species. We also generated a model structure in which the FeS center of the Rieske protein was positioned closer to the heme of cyt f than observed in the crystal structure and studied its interactions with both PC and cyt c6. Our data showed that the Rieske protein in both the original crystal structure and in our modeled structure of the cyt b6f complex did not physically interfere with binding position or orientation of PC or cyt c6 on cyt f. PC docked on cyt f with the same orientation in the presence or the absence of the Rieske protein, which matched well with the previously reported NMR structures of complexes between cyt f and PC. When the FeS center of the Rieske protein was moved close to the heme of cyt f, it even enhanced the interaction rates. Studies using a cyt f modified in the 184-191 loop showed that the cyt f structure is a more important factor in determining the rate of complex formations than is the presence or the absence of the Rieske protein or its position with respect to cyt f.  相似文献   

6.
The ubihydroquinone:cytochrome c oxidoreductase (also called complex III, or bc (1) complex), is a multi subunit enzyme encountered in a very broad variety of organisms including uni- and multi-cellular eukaryotes, plants (in their mitochondria) and bacteria. Most bacteria and mitochondria harbor various forms of the bc (1) complex, while plant and algal chloroplasts as well as cyanobacteria contain a homologous protein complex called plastohydroquinone:plastocyanin oxidoreductase or b (6) f complex. Together, these enzyme complexes constitute the superfamily of the bc complexes. Depending on the physiology of the organisms, they often play critical roles in respiratory and photosynthetic electron transfer events, and always contribute to the generation of the proton motive force subsequently used by the ATP synthase. Primarily, this review is focused on comparing the 'mitochondrial-type' bc (1) complex and the 'chloroplast-type' b (6) f complex both in terms of structure and function. Specifically, subunit composition, cofactor content and assembly, inhibitor sensitivity, proton pumping, concerted electron transfer and Fe-S subunit large-scale domain movement of these complexes are discussed. This is a timely undertaking in light of the structural information that is emerging for the b (6) f complex.  相似文献   

7.
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30? along the membrane normal×25? (central inter-monomer distance)×15? (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.  相似文献   

8.
The cytochrome b6f complex is a dimeric protein complex that is of central importance for photosynthesis to carry out light driven electron and proton transfer in chloroplasts. One molecule of chlorophyll a was found to associate per cytochrome b6f monomer and the structural or functional importance of this is discussed. We show that etioplasts which are devoid of chlorophyll a already contain dimeric cytochrome b6f. However, the phytylated chlorophyll precursor protochlorophyll a, and not chlorophyll a, is associated with subunit b6. The data imply that a phytylated tetrapyrrol is an essential structural requirement for assembly of cytochrome b6f.  相似文献   

9.
Cytochrome b6-f complexes have been isolated from Chlamydomonas reinhardtii, Dunaliella saline and Scenedesmus obliquus. Each complex is essentially free of chlorophyll and carotenoids and contains cytochrome b6 and cytochrome f hemes in a 2:1 molar ratio. C. reinhardtii and S. obliquus complexes contain the Rieske iron-sulfur protein (present in approx 1:1 molar ratio to cytochrome f) and each catalyzes a DBMIB- and DNP-INT-sensitive electron transfer from duroquinol to spinach plastocyanin. Immunological assays using antibodies to the peptides from the spinach cytochrome complex show varying cross-reactivity patterns except for the complete absence of binding to the Rieske proteins in any of the three complexes, suggesting little structural similarity between the Rieske proteins of algae with those from higher plants. One complex (D. salina) has been uniformly labeled by growth in NaH14CO3 to determine stoichiometries of constituent polypeptide subunits. Results from these studies indicate that all functionally active cytochrome b6-f complexes contain four subunits which occur in equimolar amounts.  相似文献   

10.
Cytochrome f/b6 and ATP synthetase (CF0-CF1) complexes from spinach chloroplasts have been reconstituted into liposomes prepared from soybean phospholipids and purified spinach galactolipids. Freeze- fracture analysis revealed homogeneous populations of particles spanning the lipid bilayers with their elongated axes perpendicular to the membrane plane. The lipid composition of the liposomes had no effect on the size of the reconstituted complexes, the average diameter of cytochrome f/b6 complex measuring 8.5 nm, and of the CF0 base piece of the ATP synthetase, 9.5 nm. When reconstituted cytochrome f/b6 complexes were cross-linked by means of antibodies prepared against the whole complex, the thus aggregated particles formed either hexagonal or square arrays. In both instances the center-to-center spacing of the particles was 8.3 nm, thereby suggesting that this value could be closer to the real diameter of the complexes than the one obtained from measuring individual particles. Assuming an ellipsoidal shape for these particles, and using a measured height of 11 nm, a molecular weight of approximately 280,000 could be calculated for the reconstituted cytochrome f/b6 complex, consistent with a dimeric configuration. In many instances the crystalline sheets of antibody-aggregated cytochrome f/b6 complexes were found to be free in the buffer solution; apparently the antibody-induced strains caused the sheet-like aggregates to pop out of the liposomal membranes. Agglutination studies of inside-out and right-side-out thylakoid vesicles revealed the antigenic determinants of the cytochrome f and cytochrome b6 polypeptides to be exposed on the inner thylakoid surface and to be present in stacked and unstacked membrane regions. The molecular weight calculated from the size of freeze-fractured CF0 base pieces was over twice the value determined by x-ray scattering data. This discrepancy may be caused by significant lipid domains within the base piece, or by an unusual fracturing behavior of the base piece in reconstituted liposomes.  相似文献   

11.
Heimann S  Ponamarev MV  Cramer WA 《Biochemistry》2000,39(10):2692-2699
Based on the atomic structures of the mitochondrial cytochrome bc(1) complex, it has been proposed that the soluble domain of the [2Fe-2S] Rieske iron-sulfur protein (ISP) must rotate by ca. 60 degrees and translate through an appreciable distance between two binding sites, proximal to cytochrome c(1) and to the lumen-side quinol binding site. Such motional freedom implies that the electron-transfer rate should be affected by the lumenal viscosity. The flash-induced oxidation of cytochrome f, the chloroplast analogue of cytochrome c(1), was found to be inhibited reversibly by increased lumenal viscosity, as was the subsequent reduction of both cytochrome b(6) and cytochrome f. The rates of these three redox reactions correlated inversely with lumenal viscosity over a viscosity range of 1-10 cP. Reduction of cytochrome b(6) and cytochrome f was not concerted. The rate of cytochrome f reduction was observed to be approximately half that of cytochrome b(6) regardless of the actual viscosity, implying that the path length traversed by the ISP in reduction of cytochrome f is twice that of cytochrome b(6). This suggests that upon initiation of electron transfer by a light flash, cytochrome b(6) reduction requires movement of reduced ISP from an initial position predominantly proximal to cytochrome f, apparently favored by the reduced ISP, to the quinol binding site at which the oxidant-induced reduction of cytochrome b(6) is initiated. Subsequent reduction of cytochrome f requires the additional movement of the ISP back to a site proximal to cytochromef. There is no discernible viscosity dependence for cytochrome b(6) reduction under oxidizing conditions, presumably because the oxidized ISP preferentially binds proximal to the quinone binding niche. The dependence of the cytochrome redox reaction on ambient viscosity implies that the tethered diffusional motion of the ISP is part of the rate limitation for charge transfer through the b(6)f complex.  相似文献   

12.
The instability of membrane proteins in detergent solution can generally be traced to the dissociating character of detergents and often correlates with delipidation. We examine here the possibility of substituting detergents, after membrane proteins have been solubilized, with non-detergent surfactants whose hydrophobic moiety contains a perfluorinated region that makes it lipophobic. In order to improve its affinity for the protein surface, the fluorinated chain is terminated by an ethyl group. Test proteins included bacteriorhodopsin, the cytochrome b(6)f complex, and the transmembrane region of the bacterial outer membrane protein OmpA. All three proteins were purified using classical detergents and transferred into solutions of C(2)H(5)C(6)F(12)C(2)H(4)-S-poly-Tris-(hydroxymethyl)aminomethane (HF-TAC). Transfer to HF-TAC maintained the native state of the proteins and prevented their precipitation. Provided the concentration of HF-TAC was high enough, HF-TAC/membrane protein complexes ran as single bands upon centrifugation in sucrose gradients. Bacteriorhodopsin and the cytochrome b(6)f complex, both of which are detergent-sensitive, exhibited increased biochemical stability upon extended storage in the presence of a high concentration of HF-TAC as compared to detergent micelles. The stabilization of cytochrome b(6)f is at least partly due to a better retention of protein-bound lipids.  相似文献   

13.
Cyanobacterial photosystem 2 and cytochrome b(6)f complexes have been structurally resolved up to the molecular level while the adjustment of their function in response to environmental and intracellular parameters is based on various modifications of these complexes which have not yet been resolved in detail. This minireview summarizes recent results on two central modifications for each complex: (a) for the cytochrome b(6)f complex the implication of PetP, a new subunit, and of three copies of PetC, the Rieske protein, for the fine-tuning of the photosynthetic electron transport is evaluated; (b) for photosystem 2, the heterogeneity of the D1 subunit and the role of subunit Psb27 is discussed in relation to stress response and the biogenesis/repair cycle. The presented "dynamic" models for both complexes should illustrate the need to complement structural by more extensive functional models which consider the flexibility of individual complexes in the physiological context - beyond structure.  相似文献   

14.
15.
The cytochrome b(6)f complex catalyses electron transfer from plastoquinol to a hydrosoluble acceptor (plastocyanin), while building up an electrochemical proton gradient. Oxidation and reduction of plastoquinol occur respectively at the Q(o) site (exposed on the luminal side of the thylakoid membrane) and at the Q(i) site (facing the stroma). The discovery of an additional c'-type heme in the Q(i) site has cast a new light on the difficulties previously encountered to obtain mutants at this site. In this work, we critically examine our unsuccessful attempts to obtain Q(i) site mutants based on sequence and structure homology between cytochrome b(6)f and bc(1) complexes.  相似文献   

16.
Photosystem I (PSI) and photosystem II (PSII) complexes have been isolated from stacked spinach thylakoid membranes that had been treated with varying amounts of glutaraldehyde. The concentrations of cytochrome f, Q, and P700 have been determined by spectrophotometric methods. It was found that at low concentrations of glutaraldehyde, the amount of cytochrome f associated with either PSII or PSI increased significantly while the amounts of Q and P700 stayed relatively constant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting analyses indicated the presence of cytochrome f and other components of the cytochrome b6-f complex in the PSII and PSI preparations after glutaraldehyde treatment, but no intermolecular cross-linked polypeptides could be detected. Solubilization of the cytochrome b6-f complex was also inhibited after thylakoid membranes were treated with low concentrations of glutaraldehyde. These results are discussed in relation to current models for the organization of the membrane complexes, and relate to the location of the cytochrome b6-f complex in appressed and nonappressed membrane regions of thylakoids.  相似文献   

17.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

18.
The lumen segment of cytochrome f consists of a small and a large domain. The role of the small domain in the biogenesis and stability of the cytochrome b(6)f complex and electron transfer through the cytochrome b(6)f complex was studied with a small domain deletion mutant in Chlamydomonas reinhardtii. The mutant is able to grow photoautotrophically but with a slower rate than the wild type strain. The heme group is covalently attached to the polypeptide, and the visible absorption spectrum of the mutant protein is identical to that of the native protein. The kinetics of electron transfer in the mutant were measured by flash kinetic spectroscopy. Our results show that the rate for the oxidation of cytochrome f was unchanged (t(12) = approximately 100 micros), but the half-time for the reduction of cytochrome f is increased (t(12) = 32 ms; for wild type, t(12) = 2.1 ms). Cytochrome b(6) reduction was slower than that of the wild type by a factor of approximately 2 (t(12) = 8.6 ms; for wild type, t(12) = 4.7 ms); the slow phase of the electrochromic band shift also displayed a slower kinetics (t(12) = 5.5 ms; for wild type, t(12) = 2.7 ms). The stability of the cytochrome b(6)f complex in the mutant was examined by following the kinetics of the degradation of the individual subunits after inhibiting protein synthesis in the chloroplast. The results indicate that the cytochrome b(6)f complex in the small domain deletion mutant is less stable than in the wild type. We conclude that the small domain is not essential for the biogenesis of cytochrome f and the cytochrome b(6)f complex. However, it does have a role in electron transfer through the cytochrome b(6)f complex and contributes to the stability of the complex.  相似文献   

19.
Photosynthesis Research - Structure–function studies of the cytochrome b6f complex, the central hetero-oligomeric membrane protein complex in the electron transport chain of oxygenic...  相似文献   

20.
Heliobacterium modesticaldum is a Gram-positive, anaerobic, anoxygenic photoheterotrophic bacterium. Its cytochrome bc complex (Rieske/cyt b complex) has some similarities to cytochrome b(6)f complexes from cyanobacteria and chloroplasts, and also shares some characteristics of typical bacterial cytochrome bc(1) complexes. One of the unique factors of the heliobacterial cytochrome bc complex is the presence of a diheme cytochrome c instead of the monoheme cytochrome f in the cytochrome b(6)f complex or the monoheme cytochrome c(1) in the bc(1) complex. To understand the structure and function of this diheme cytochrome c protein, we expressed the N-terminal transmembrane-helix-truncated soluble H. modesticaldum diheme cytochrome c in Escherichia coli. This 25kDa recombinant protein possesses two c-type hemes, confirmed by mass spectrometry and a variety of biochemical techniques. Sequence analysis of the H. modesticaldum diheme cytochrome c indicates that it may have originated from gene duplication and subsequent gene fusion, as in cytochrome c(4) proteins. The recombinant protein exhibits a single redox midpoint potential of +71mV versus NHE, which indicates that the two hemes have very similar protein environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号