共查询到19条相似文献,搜索用时 78 毫秒
1.
利用欧几里得距离衡量非负矩阵非负满秩分解的近似度,将其转化为最小二乘法求最优问题。并用VC6.0与Lingo对算法进行程序实现,可以为非负矩阵分解应用研究提供一些参考。 相似文献
2.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(Di-aNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。 相似文献
3.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(DiaNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。 相似文献
4.
提出一种基于非负矩阵分解NMF(Non-negative Matrix Factorization)的数字水印算法.先通过NMF构造载体图像基于部分表示的系数矩阵,将灰度水印图像嵌入其中;再利用NMF基矩阵作为密钥提取水印.为了说明有效性,该算法与主流的DCT水印算法进行相关比较实验,结果表明该算法同DCT算法一样有效,且在抗剪切和抗滤波性能上优于DCT算法. 相似文献
5.
6.
非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种常用的非负多元数据描述方法.处理数据矩阵集时,NMF描述力不强、推广性差.为解决这两个问题,并保留NMF的好特性,该文提出了非负矩阵集分解(Non-negative Matrix Set Factorization,NMSF)的概念,并在NMSF的框架下系统研究了基于双线性型的非负矩阵集分解(Bilinear Form-Based Non-negative Matrix Set Faetorization,BFBNMSF),构造了单调下降的BFBNMSF算法.理论分析和实验结果均表明:处理数据矩阵集时,BFBNMSF比NMF描述力强、推广性好.由此可认为,此时BFBNMSF比NMF更善于抓住数据的本质特征. 相似文献
7.
针对非负矩阵分解稀疏性不够,通过引入平滑矩阵调节字典矩阵和系数矩阵的稀疏性,提出基于非平滑非负矩阵分解语音增强算法。算法通过语音和噪声的先验字典学习构造联合字典矩阵;然后通过非平滑非负矩阵分解更新带噪语音在联合字典矩阵下的投影系数实现语音增强;同时通过滑动窗口法实时更新先验噪声字典。仿真结果表明,该算法相对非负矩阵分解语音增强算法和MMSE算法具有更好的抑制噪声能力。 相似文献
8.
阐述MPI与OpenMP进行并行计算的特点,并在Visual Studio 2010上构建一个基于两者的混合编程平台。程序在该平台上执行时能够同时实现多进程与进程内多线程编程,设计并实现一种基于数据划分的矩阵乘法的并行算法,将数据分解为两部分交给两个计算节点分别完成,并在每个计算节点内将数据进一步划分,交给多个线程同时执行。通过与非并行矩阵乘法、MPI矩阵乘法、OpenMP矩阵乘法运算性能进行比较,验证该算法可以有效地挖掘计算机的处理能力。 相似文献
9.
10.
11.
12.
13.
14.
矩阵分解因可以实现大规模数据处理而具有十分广泛的应用。非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种在约束矩阵元素为非负的条件下进行的分解方法。利用少量已知样本的标注信息和大量未标注样本,并施加稀疏性约束,构造了一种新的算法——基于稀疏约束的半监督非负矩阵分解算法。推导了其有效的更新算法,并证明了该算法的收敛性。在常见的人脸数据库上进行了验证,实验结果表明CNMFS算法相对于NMF和CNMF等算法具有较好的稀疏性和聚类精度。 相似文献
15.
由于光谱分辨率和空间分辨率的制约以及物理条件的限制,高光谱数据具有很高的光谱分辨率而其空间分辨率却很低。因此,一般高光谱数据的空间分辨率往往低于仅有几个波段的多光谱数据的空间分辨率。高光谱数据和多光谱数据的融合可以得到同时具有高空间分辨率和高光谱分辨率的数据,进而应用于更高空间分辨率下地物的识别和分类。非负矩阵分解(Nonnegative Matrix Factorization)算法用于实现低空间分辨率高光谱数据和高空间分辨率多光谱数据的融合。首先利用顶点成分分析法VCA(Vertex Component Analysis)分解高光谱数据,得到初始的端元波谱矩阵和端元丰度矩阵;然后用非负矩阵分解算法交替地对高光谱数据和多光谱数据进行分解,得到高光谱分辨率的端元波谱矩阵和高空间分辨率的丰度矩阵;最后两个矩阵相乘得到高空间分辨率和高光谱分辨率的融合结果。在每一步非负矩阵分解过程中,数据之间的传感器观测模型用于分解矩阵的初始化。AVIRIS和HJ-1A数据实验结果分析表明:非负矩阵分解算法有效提高了高光谱数据的所有波长范围内波段数据的空间分辨率,而高精度的融合结果可用于地物的目标识别和分类。 相似文献
16.
17.
针对当前搭建集群并行系统复杂且耗时等问题,提出基于Docker搭建并行系统。介绍轻量级虚拟化技术Docker的核心概念和基本架构,并基于Docker技术在Linux平台上搭建集群并行开发环境。简要阐述并行计算的思想,叙述MPI和OpenMP并行计算的基本概念和特点,针对矩阵并行乘法的算法建立MPI和OpenMP的混合编程模型,并给出混合编程模型与MPI并行编程模型以及OpenMP并行编程模型的性能对比,分析出现差异的原因。基于该混合编程模型比较Docker与传统物理机两者搭建的并行系统的并行效率。 相似文献
18.
19.
非负矩阵分解(Nonnegative Matrix Factorization,NMF)不仅可以很好地描述数据而且分解后的矩阵具有直观的物理意义。为了提高算法的有效性和识别率,提出了一种更为合理的算法——基于图正则化和稀疏约束的增量型非负矩阵分解(Graph Regularized and Incremental Nonnegative Matrix Factorization with Sparseness Constraints,GINMFSC)。该算法既保持了数据的几何结构,又充分利用上一步的分解结果进行增量学习,而且对系数矩阵施加了稀疏性约束,最后将它们整合于单个目标函数中,构造了一个有效的更新算法。在多个数据库上的仿真结果表明,相对于NMF,GNMF,INMF,IGNMF等算法,GINMFSC算法在降低运算时间的同时,还具有更好的聚类精度和稀疏性。 相似文献